Search alternatives:
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), awd decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), awd decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1141
-
1142
-
1143
Species richness (<i>SR</i>, upper panels) and Shannon’s entropy (<i>SE</i>, lower panels) vs. the rate in which new species are trying to invade the community, <i>νN</i>.
Published 2022“…However, as the number of temporal niches decreases global competition puts a hurdle against invasion, as every invader must compete with niche-specialists. …”
-
1144
-
1145
Differential gene expression in WT and ESAM-KO pre CFU-E fraction after 5-FU treatment.
Published 2016“…<p>(A-E) WT and ESAM-KO mice were treated with a single 5-FU (120 mg/kg) injection and sacrificed 8 days after treatment. …”
-
1146
-
1147
Stress-strain curves of different wt. % <i>f-MWCNTs</i> based modified GFRPs.
Published 2022Subjects: -
1148
-
1149
-
1150
Effects of S100A6 on CayBP/SIP-mediated β –catenin degradation.
Published 2013“…<p>(A) Co-immunoprecipitation assay showed that truncated mutant CacyBP/SIPΔS100 bind both Skp1 and Siah1, suggesting S100A6 did not affect the formation of Siah1-CacyBP/SIP-Skp1 unbiquitin ligase complex. …”
-
1151
-
1152
-
1153
-
1154
-
1155
-
1156
-
1157
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1158
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1159
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1160
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”