Showing 101 - 120 results of 23,307 for search '(( 5 ((wt decrease) OR (nn decrease)) ) OR ( 100 ((nm decrease) OR (a decrease)) ))', query time: 0.98s Refine Results
  1. 101

    Dexamethasone decreases PGC-1α protein expression and transcription. by Jill A. Rahnert (2872766)

    Published 2016
    “…<p>(A) Treatment of L6 myotubes with Dex (100nM, 48hrs) decreased PGC-1α protein expression (p = 0.01). n = 3/treatment from 3 experiments. …”
  2. 102

    Dexamethasone decreases CRTC1 and CRTC2 nuclear localization. by Jill A. Rahnert (2872766)

    Published 2016
    “…<p>Treatment of L6 myotubes with Dex (100nM, 48hrs) decreased (A) total CRTC1 (p = 0.004 and CRTC2 protein (p = 0.0007). n = 9/treatment from 3 experiments. …”
  3. 103
  4. 104
  5. 105

    TUDCA decreases ER stress in HOX neonatal rat lungs. by Kirkwood A. Pritchard Jr. (13449794)

    Published 2022
    “…(<b>C</b>) In IHC stain, P-IRE1α levels are decreased (40.8±3.5 A.U. <i>vs</i> 53.1±5.0 A.U., p<0.001, n = 6, 3 for each sex) in chronic hyperoxia exposed neonatal rat lungs by TUDCA. …”
  6. 106
  7. 107
  8. 108
  9. 109
  10. 110
  11. 111
  12. 112
  13. 113
  14. 114
  15. 115
  16. 116

    Oxytocin decreases locally evoked CeA GABAergic signaling and blunts alcohol effects. by Brendan J. Tunstall (6593357)

    Published 2019
    “…(B) Effect of 3 concentrations of oxytocin (100, 500, and 1,000 nM) on eIPSP amplitudes in CeA neurons from alcohol-nondependent and -dependent rats. …”
  17. 117

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  18. 118

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  19. 119

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  20. 120

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”