Showing 30,541 - 30,560 results of 30,980 for search '(( 5 ((wt decrease) OR (nn decrease)) ) OR ( 50 ((we decrease) OR (a decrease)) ))', query time: 0.99s Refine Results
  1. 30541

    Data_Sheet_1_Cost-Consequence Analysis of Advanced Imaging in Acute Ischemic Stroke Care.docx by Artem T. Boltyenkov (11758886)

    Published 2021
    “…<p>Introduction: The purpose of this study was to illustrate the potential costs and health consequences of implementing advanced CT angiography and perfusion (CTAP) as the initial imaging in patients presenting with acute ischemic stroke (AIS) symptoms at a comprehensive stroke center (CSC).</p><p>Methods: A decision-simulation model based on the American Heart Association's recommendations for AIS care pathways was developed to assess imaging strategies for a 5-year period from the institutional perspective. …”
  2. 30542

    Table 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  3. 30543

    DataSheet_1_Based on machine learning algorithms for estimating leaf phosphorus concentration of rice using optimized spectral indices and continuous wavelet transform.pdf by Yi Zhang (9093)

    Published 2023
    “…To obtain the LPC and leaf spectra reflectance, the pot experiments with four phosphorus (P) treatments and two rice cultivars were carried out in a greenhouse in 2020-2021. The results indicated that P deficiency increased leaf reflectance in the visible region (350-750 nm) and decreased the reflectance in the near-infrared (NIR, 750-1350 nm) regions compared to the P-sufficient treatment. …”
  4. 30544

    Data Sheet 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  5. 30545

    Data used in the experiment. by Xuechun Wang (8504442)

    Published 2023
    “…<i>cinerea</i> conidia captured per plate decreased for all mulch treatments. More than 50% and approximately 80% of the total number of dispersed conidia were found on plates 10 and 16 cm away from the inoculum source across all treatments, respectively. …”
  6. 30546

    Alteration of RRM1 expression after gemcitabine exposure in pancreatic cancer cells. by Tomotaka Kato (5916590)

    Published 2021
    “…<p><b>(A)</b> Representative immunofluorescence of Panc1 cells and immunohistochemical staining of human pancreatic cancer cells for RRM1 expression showing that RRM1 is mainly localized in the cytoplasm. …”
  7. 30547

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  8. 30548

    Table 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  9. 30549

    DataSheet_1_The Associations of Caesarean Delivery With Risk of Wheezing Diseases and Changes of T Cells in Children.pdf by Jilei Lin (8280306)

    Published 2021
    “…Furthermore, compared with children born through VD, a significant change of the T cells (increased proportion of CD4+ T cells and decreased number and proportion of CD8+ T cells) were observed before the age of one in the CD group. …”
  10. 30550

    Table_1_In vitro Analysis of the Intradiscal Pressure of the Thoracic Spine.XLSX by Hans-Joachim Wilke (436691)

    Published 2020
    “…During loading, the IDP was measured using a flexible sensor tube, which was inserted into the nucleus pulposus under x-ray control. …”
  11. 30551
  12. 30552

    Protein abundance and predicted subcellular distribution of <i>G. lamblia</i> trophozoites analyzed at 0, 4, 8 and 12hpie. by Carmen Faso (504093)

    Published 2013
    “…<p>(A) Comparison of changes in protein abundance between 0 and 4hpie (0–4), 4 and 8hpie (4–8) and 8 and 12hpie (8–12). …”
  13. 30553

    Data Sheet 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  14. 30554

    Data_Sheet_1_Revising Incidence and Mortality of Lung Cancer in Central Europe: An Epidemiology Review From Hungary.docx by Krisztina Bogos (7529174)

    Published 2019
    “…Age-adjusted incidence rates were 115.7–101.6/100,000 person-years among men (ESP 1976: 84.7–72.6), showing a mean annual change of − 2.26% (p = 0.008). Incidence rates among women increased from 48.3 to 50.3/100,000 person-years (ESP 1976: 36.9–38.0), corresponding to a mean annual change of 1.23% (p = 0.028). …”
  15. 30555

    Data Sheet 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  16. 30556

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  17. 30557

    Pax6 represses SPBP-mediated enhancement of AR activity. by Julianne Elvenes (205103)

    Published 2011
    “…The experiment was performed and data obtained as described in A. (C) Chromatin Immunoprecipitation assays show that both SPBP and AR associate with the probasin promoter, and that overexpression of Pax6 decreases the amount of SPBP associated with the promoter. …”
  18. 30558

    Data_Sheet_3_Long non-coding RNA SNHG9 regulates viral replication in rhabdomyosarcoma cells infected with enterovirus D68 via miR-150-5p/c-Fos axis.PDF by Huichao Fu (11659595)

    Published 2023
    “…Median tissue culture infectious dose (TCID50) was applied to detect viral titers.</p>Results<p>The results demonstrated that a total of 375 lncRNAs were highly dysregulated in the EV-D68 infection model. …”
  19. 30559

    The impact of refractive error correction on health-related quality of life in nursing home residents in Armenia by Aida Giloyan (16826909)

    Published 2025
    “…About 42.0% had mild to severe visual impairment (VI), while 5.0% were blind. At the follow-up, the normal vision improved from 52.8% to 64.9%, while mild to severe VI decreased from 42.3% to 30.3%. …”
  20. 30560

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”