Search alternatives:
teer decrease » greater decrease (Expand Search)
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1161
-
1162
-
1163
-
1164
-
1165
-
1166
-
1167
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1168
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1169
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1170
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1171
-
1172
-
1173
The effects of thioperamide and alpha-FMH on the amount of sleep/wake in WT and W/W<sup>v</sup> mice.
Published 2013“…(B) In contrast, injection of alpha-FMH (ip), a HDC blocker, at medium (50 mg/kg) and high (100 mg/kg) doses decreased the amount of wakefulness in WT mice. …”
-
1174
Transient kinetic analysis of the S100A4-N-ERMAD interaction.
Published 2017“…<p>(A, B) 2 μM N-ERMAD or F2 lobe (respectively) was mixed with an equal volume of S100A4 in different concentrations and a decrease in intrinsic Trp fluorescence was monitored over time (left panel). …”
-
1175
-
1176
Low doses of S100A14 stimulate cell proliferation and promote cell survival.
Published 2011“…(<b>I</b>) 10 µg/ml S100A14 decreased the percentage of sub-G1 phase of KYSE180 cells with the treatment of Dox (0.5 µM, 48 h). …”
-
1177
-
1178
Table_1_S100A8 and S100A9 Promote Apoptosis of Chronic Eosinophilic Leukemia Cells.DOCX
Published 2020“…The surface TLR4 expression increased after exposure to S100A8 and S100A9 although total TLR4 expression decreased. …”
-
1179
Table_2_S100A8 and S100A9 Promote Apoptosis of Chronic Eosinophilic Leukemia Cells.DOCX
Published 2020“…The surface TLR4 expression increased after exposure to S100A8 and S100A9 although total TLR4 expression decreased. …”
-
1180
Presentation_1_S100A8 and S100A9 Promote Apoptosis of Chronic Eosinophilic Leukemia Cells.PPT
Published 2020“…The surface TLR4 expression increased after exposure to S100A8 and S100A9 although total TLR4 expression decreased. …”