Showing 1 - 20 results of 135 for search '(( 5 a decrease ) OR ((( 50 c decrease ) OR ( 10 ((ng decrease) OR (_ decrease)) ))))~', query time: 1.19s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Synthesis and Antiproliferative Activity of a New Series of Mono- and Bis(dimethylpyrazolyl)‑<i>s</i>‑triazine Derivatives Targeting EGFR/PI3K/AKT/mTOR Signaling Cascades by Ihab Shawish (13015516)

    Published 2022
    “…<i>N</i>-(4-Bromophenyl)-4-(3,5-dimethyl-1<i>H</i>-pyrazol-1-yl)-6-morpholino-1,3,5-triazin-2-amine <b>4f</b>, <i>N</i>-(4-chlorophenyl)-4,6-bis­(3,5-dimethyl-1<i>H</i>-pyrazol-1-yl)-1,3,5-triazin-2-amine <b>5c</b>, and 4,6-<i>bis</i>(3,5-dimethyl-1<i>H</i>-pyrazol-1-yl)-<i>N</i>-(4-methoxyphenyl)-1,3,5-triazin-2-amine <b>5d</b> showed promising activity against these cancer cells: <b>4f</b> [(IC<sub>50</sub> = 4.53 ± 0.30 μM (MCF-7); 0.50 ± 0.080 μM (HCT-116); and 3.01 ± 0.49 μM (HepG2)]; <b>5d</b> [(IC<sub>50</sub> = 3.66 ± 0.96 μM (HCT-116); and 5.42 ± 0.82 μM (HepG2)]; and <b>5c</b> [(IC<sub>50</sub> = 2.29 ± 0.92 μM (MCF-7)]. …”
  6. 6

    Synthesis and Antiproliferative Activity of a New Series of Mono- and Bis(dimethylpyrazolyl)‑<i>s</i>‑triazine Derivatives Targeting EGFR/PI3K/AKT/mTOR Signaling Cascades by Ihab Shawish (13015516)

    Published 2022
    “…<i>N</i>-(4-Bromophenyl)-4-(3,5-dimethyl-1<i>H</i>-pyrazol-1-yl)-6-morpholino-1,3,5-triazin-2-amine <b>4f</b>, <i>N</i>-(4-chlorophenyl)-4,6-bis­(3,5-dimethyl-1<i>H</i>-pyrazol-1-yl)-1,3,5-triazin-2-amine <b>5c</b>, and 4,6-<i>bis</i>(3,5-dimethyl-1<i>H</i>-pyrazol-1-yl)-<i>N</i>-(4-methoxyphenyl)-1,3,5-triazin-2-amine <b>5d</b> showed promising activity against these cancer cells: <b>4f</b> [(IC<sub>50</sub> = 4.53 ± 0.30 μM (MCF-7); 0.50 ± 0.080 μM (HCT-116); and 3.01 ± 0.49 μM (HepG2)]; <b>5d</b> [(IC<sub>50</sub> = 3.66 ± 0.96 μM (HCT-116); and 5.42 ± 0.82 μM (HepG2)]; and <b>5c</b> [(IC<sub>50</sub> = 2.29 ± 0.92 μM (MCF-7)]. …”
  7. 7
  8. 8

    6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate (F-53B) Induces Aging and Parkinson’s Disease-like Disorders in <i>C. elegans</i> at Low Concentrations by Hui Li (32376)

    Published 2025
    “…Here, we evaluated the aging and neurodegenerative effects of F-53B using the C. elegans model. After exposure to F-53B at 2, 10, and 50 ng/L, C. elegans showed an aging phenomenon as lipofuscin was significantly increased by 48.7–57.5% and locomotion, such as center point speed, was significantly decreased in all exposure groups. …”
  9. 9

    6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate (F-53B) Induces Aging and Parkinson’s Disease-like Disorders in <i>C. elegans</i> at Low Concentrations by Hui Li (32376)

    Published 2025
    “…Here, we evaluated the aging and neurodegenerative effects of F-53B using the C. elegans model. After exposure to F-53B at 2, 10, and 50 ng/L, C. elegans showed an aging phenomenon as lipofuscin was significantly increased by 48.7–57.5% and locomotion, such as center point speed, was significantly decreased in all exposure groups. …”
  10. 10

    6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate (F-53B) Induces Aging and Parkinson’s Disease-like Disorders in <i>C. elegans</i> at Low Concentrations by Hui Li (32376)

    Published 2025
    “…Here, we evaluated the aging and neurodegenerative effects of F-53B using the C. elegans model. After exposure to F-53B at 2, 10, and 50 ng/L, C. elegans showed an aging phenomenon as lipofuscin was significantly increased by 48.7–57.5% and locomotion, such as center point speed, was significantly decreased in all exposure groups. …”
  11. 11

    6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate (F-53B) Induces Aging and Parkinson’s Disease-like Disorders in <i>C. elegans</i> at Low Concentrations by Hui Li (32376)

    Published 2025
    “…Here, we evaluated the aging and neurodegenerative effects of F-53B using the C. elegans model. After exposure to F-53B at 2, 10, and 50 ng/L, C. elegans showed an aging phenomenon as lipofuscin was significantly increased by 48.7–57.5% and locomotion, such as center point speed, was significantly decreased in all exposure groups. …”
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20