Showing 11,441 - 11,460 results of 20,274 for search '(( 5 ht decrease ) OR ( 100 ((((we decrease) OR (a decrease))) OR (mean decrease)) ))', query time: 0.97s Refine Results
  1. 11441

    Cartilage and subchondral bone degeneration scores at 7 and 12 wks after the start of the experiment. by Junya Sakamoto (4286575)

    Published 2023
    “…<p><b>A:</b> a, b and c; Representative toluidine blue staining of each group at 7 wks after the start of experiment. …”
  2. 11442

    Chemical composition, hygiene characteristics, and coagulation aptitude of milk for Parmigiano Reggiano cheese from herds yielding different milk levels by Piero Franceschi (10446722)

    Published 2021
    “…Increased milk production was associated with a reduction in milk fat content (from 3.54 in the L-group milk to 3.29 g/100 g in the H-group milk). …”
  3. 11443

    Image2_Age and Gender Specific Lung Cancer Incidence and Mortality in Hungary: Trends from 2011 Through 2016.JPEG by Lilla Tamási (177760)

    Published 2021
    “…The male-to-female incidence rate ratio reached 2.46–3.01 (p < 0.0001) among the 70–79 age group. We found 2–11% decrease in male incidence rate at most age groups, while a significant 1–3% increase was observed in older females (>60) annually during the study period.…”
  4. 11444

    Image1_Age and Gender Specific Lung Cancer Incidence and Mortality in Hungary: Trends from 2011 Through 2016.JPEG by Lilla Tamási (177760)

    Published 2021
    “…The male-to-female incidence rate ratio reached 2.46–3.01 (p < 0.0001) among the 70–79 age group. We found 2–11% decrease in male incidence rate at most age groups, while a significant 1–3% increase was observed in older females (>60) annually during the study period.…”
  5. 11445

    Rectal epithelial EGL-10 acts downstream of serotonin to modify the immune response and affect pathogen clearance. by Alexandra Anderson (97972)

    Published 2013
    “…<p>Treatment of wild type animals with 3.8/ml 5-HT caused a decrease in the number of Dar animals following infection with <i>M. nematophilum</i> (A) and decreased the clearance of SYTO13 labeled pathogen from the rectal opening (B). …”
  6. 11446

    Suppression of tau expression leads to reversal of inflammation. by Paul D. Wes (621346)

    Published 2014
    “…<p>(A) Administration of doxycycline (Dox) to rTg4510 mice resulted in a decrease in total human tau (HT7) in the cortex and hippocampus. …”
  7. 11447

    In Situ Mechanochemical Modulation of Carbon Nanotube Forest Growth by Nicholas T. Dee (6172670)

    Published 2018
    “…By correlating in situ kinetics measurements with spatial mapping of CNT orientation and density by X-ray scattering, we find that the average growth rate of individual CNTs is also mechanically modulated; specifically, a 100-fold increase in force causes a 4-fold decrease in average CNT lengthening rate. …”
  8. 11448

    In Situ Mechanochemical Modulation of Carbon Nanotube Forest Growth by Nicholas T. Dee (6172670)

    Published 2018
    “…By correlating in situ kinetics measurements with spatial mapping of CNT orientation and density by X-ray scattering, we find that the average growth rate of individual CNTs is also mechanically modulated; specifically, a 100-fold increase in force causes a 4-fold decrease in average CNT lengthening rate. …”
  9. 11449

    In Situ Mechanochemical Modulation of Carbon Nanotube Forest Growth by Nicholas T. Dee (6172670)

    Published 2018
    “…By correlating in situ kinetics measurements with spatial mapping of CNT orientation and density by X-ray scattering, we find that the average growth rate of individual CNTs is also mechanically modulated; specifically, a 100-fold increase in force causes a 4-fold decrease in average CNT lengthening rate. …”
  10. 11450

    In Situ Mechanochemical Modulation of Carbon Nanotube Forest Growth by Nicholas T. Dee (6172670)

    Published 2018
    “…By correlating in situ kinetics measurements with spatial mapping of CNT orientation and density by X-ray scattering, we find that the average growth rate of individual CNTs is also mechanically modulated; specifically, a 100-fold increase in force causes a 4-fold decrease in average CNT lengthening rate. …”
  11. 11451

    In Situ Mechanochemical Modulation of Carbon Nanotube Forest Growth by Nicholas T. Dee (6172670)

    Published 2018
    “…By correlating in situ kinetics measurements with spatial mapping of CNT orientation and density by X-ray scattering, we find that the average growth rate of individual CNTs is also mechanically modulated; specifically, a 100-fold increase in force causes a 4-fold decrease in average CNT lengthening rate. …”
  12. 11452

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  13. 11453

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  14. 11454

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  15. 11455

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  16. 11456

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  17. 11457

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  18. 11458

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  19. 11459

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  20. 11460

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”