Showing 261 - 280 results of 26,758 for search '(( 5 nm decrease ) OR ((( a point decrease ) OR ( 50 ((we decrease) OR (a decrease)) ))))', query time: 0.80s Refine Results
  1. 261
  2. 262
  3. 263
  4. 264
  5. 265
  6. 266

    PointSite: A Point Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms by Xu Yan (110026)

    Published 2022
    “…In this paper, we propose a novel point clouds segmentation method, PointSite, for accurate identification of protein ligand binding atoms, which performs protein LBS identification at the atom-level in a protein-centric manner. …”
  7. 267

    PointSite: A Point Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms by Xu Yan (110026)

    Published 2022
    “…In this paper, we propose a novel point clouds segmentation method, PointSite, for accurate identification of protein ligand binding atoms, which performs protein LBS identification at the atom-level in a protein-centric manner. …”
  8. 268
  9. 269

    S9 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  10. 270

    S11 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  11. 271

    S1 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  12. 272

    S10 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  13. 273

    S6 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  14. 274

    S5 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  15. 275

    S4 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  16. 276

    S8 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  17. 277

    S12 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  18. 278

    S3 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  19. 279

    Investigated muscles and electrode positions. by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  20. 280

    S2 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”