Showing 8,581 - 8,600 results of 64,663 for search '(( 5 nn decrease ) OR ( 5 ((((point decrease) OR (fold decrease))) OR (a decrease)) ))', query time: 0.95s Refine Results
  1. 8581
  2. 8582

    Table 1_Does C1 esterase inhibitor play a role in post COVID-19 neurological symptoms? A randomized, double-blind, placebo-controlled, crossover, proof-of-concept study.docx by Isaac Melamed (6291590)

    Published 2025
    “…This immune dysfunction has been termed “Alzheimer’s of the Immune System” or AIS and there are several immune factors that may play a key role. These include, among others, complement activation due to low levels of C1-esterase inhibitor (C1-INH) and function, and a decrease in signaling of Toll-like receptor (TLR)-3. …”
  3. 8583
  4. 8584
  5. 8585
  6. 8586
  7. 8587
  8. 8588
  9. 8589
  10. 8590
  11. 8591
  12. 8592
  13. 8593
  14. 8594

    BjussuLAAO-II induces cytotoxicity and alters DNA methylation of cell-cycle genes in monocultured/co-cultured HepG2 cells by Ana Rita Thomazela Machado (6047777)

    Published 2019
    “…In co-culture, 1.00 and 5.00 μg/mL induced cytotoxicity (p < 0.05). BjussuLAAO-II increased the methylation of CCND1 and decreased the methylation of CDKN1A in monoculture and GADD45A in both cell-culture models (p < 0.05). …”
  15. 8595

    Image_6_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  16. 8596

    Image_9_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  17. 8597

    Image_7_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  18. 8598

    Image_10_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  19. 8599

    Table_3_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.xls by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  20. 8600