Search alternatives:
non decrease » point decrease (Expand Search), note decreased (Expand Search), fold decrease (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 non » _ non (Expand Search), a non (Expand Search), i non (Expand Search)
non decrease » point decrease (Expand Search), note decreased (Expand Search), fold decrease (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 non » _ non (Expand Search), a non (Expand Search), i non (Expand Search)
-
121
No significant sex differences in Iso-induced decrease of CaD<sub>80</sub>.
Published 2014“…B) Summary data for the decrease in CaD<sub>80</sub> (versus baseline values) as a function of the dose of Iso (1, 10, 31.6, 100, 316.2 nM) in the LV base <i>(left)</i> and apex <i>(right)</i> with pacing at 3 (<i>top</i>) and 5.5 Hz (<i>bottom</i>) for female (n = 5) and male (n = 5) hearts. …”
-
122
Modeling micro-injuries by introducing a certain percent (1%, or 10%, or 20%) decrease in the number of differentiated cells in 0.01% of temporal updates (randomly chosen).
Published 2016“…<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004629#pcbi.1004629.e008" target="_blank">Eq (6)</a> with <i>ϵ</i> = 0.002 was used.…”
-
123
-
124
-
125
-
126
-
127
-
128
-
129
-
130
-
131
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
132
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
133
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
134
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
135
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
136
-
137
-
138
-
139
-
140