Showing 98,721 - 98,740 results of 101,506 for search '(( 5 points decrease ) OR ( 5 ((((teer decrease) OR (mean decrease))) OR (a decrease)) ))', query time: 1.68s Refine Results
  1. 98721
  2. 98722
  3. 98723

    Image_8_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  4. 98724

    Amelioration of Huntington’s disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington’s disease monkeys by In Ki Cho (6494564)

    Published 2019
    “…Expression of <i>mHTT</i> in differentiated astrocytes induced cytosolic mHTT aggregates and nuclear inclusions, suppressed the expression of <i>SOD2</i> and <i>PGC1</i>, reduced ability to uptake glutamate, decreased 4-aminopyridine (4-AP) response, and shifted I/V plot measured by electrophysiology, which are consistent with previous reports on HD astrocytes and patient brain samples. …”
  5. 98725

    Image_2_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  6. 98726

    Table_2_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.DOCX by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  7. 98727
  8. 98728

    DataSheet_1_Shifting sensitivity of septoria tritici blotch compromises field performance and yield of main fungicides in Europe.docx by Lise Nistrup Jørgensen (3284670)

    Published 2022
    “…<p>Septoria tritici blotch (STB; Zymoseptoria tritici) is a severe leaf disease on wheat in Northern Europe. …”
  9. 98729
  10. 98730

    Table_1_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.DOCX by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  11. 98731

    Image_7_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  12. 98732

    DataSheet_6_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see... by Liuyin Li (11940365)

    Published 2022
    “…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
  13. 98733

    DataSheet_4_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see... by Liuyin Li (11940365)

    Published 2022
    “…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
  14. 98734

    DataSheet_2_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see... by Liuyin Li (11940365)

    Published 2022
    “…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
  15. 98735

    DataSheet_1_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see... by Liuyin Li (11940365)

    Published 2022
    “…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
  16. 98736

    DataSheet_3_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see... by Liuyin Li (11940365)

    Published 2022
    “…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
  17. 98737
  18. 98738
  19. 98739
  20. 98740