Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 step » _ step (Expand Search), a step (Expand Search), 2 step (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 step » _ step (Expand Search), a step (Expand Search), 2 step (Expand Search)
-
5961
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5962
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5963
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5964
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5965
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5966
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5967
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5968
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5969
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5970
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5971
-
5972
-
5973
-
5974
-
5975
Surface-Enhanced Counter Electrode Materials for the Fabrication of Ultradurable Electrochromic Devices
Published 2022“…The enhanced surface area of the CE significantly diminishes the electrode and gel electrolyte degradation and allows us to gain fundamental insight into the pathway of degradation of the electrochromic molecules at the WE. During prolonged cycling (20,000 and 50,000 cycles), the overall total resistance of ECDs remains fairly unchanged, while the capacitance decreases due to a loss of the pseudocapacitive component associated with electrochromic molecules. …”
-
5976
-
5977
-
5978
-
5979
-
5980