Search alternatives:
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
13101
-
13102
-
13103
Primers sequences (5’- 3’).
Published 2025“…Eight-week-old male wild type (WT) mice and GCN2 knock out (KO) mice were randomly divided into WT control (n = 6), WT exercise(n = 5), GCN2 KO control(n = 5), and GCN2 KO exercise(n = 5) groups. …”
-
13104
-
13105
-
13106
-
13107
-
13108
Design of the D-trial.
Published 2024“…Empirical models for the relationships between the investigated plant traits and PD/DVP were created using linear regression analysis preceded by a lack-of-fit test. An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …”
-
13109
Estimated mean values for light interception.
Published 2024“…Empirical models for the relationships between the investigated plant traits and PD/DVP were created using linear regression analysis preceded by a lack-of-fit test. An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …”
-
13110
Raw data D-trial.
Published 2024“…Empirical models for the relationships between the investigated plant traits and PD/DVP were created using linear regression analysis preceded by a lack-of-fit test. An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …”
-
13111
Phosphorylated ERK (ERK-P) is decreased in terminally prion-diseased PrP<sup>C</sup>GPIThy-1 L150 mice.
Published 2019“…Note that there is a significant decrease in ERK-P signal (*<i>p</i> = 0.031) in PrP<sup>C</sup>GPIThy-1 RML infected mice compared to WTPrP<sup>C</sup> mice, whereas no changes are observed for p38-P.…”
-
13112
-
13113
Chestnut extract but not sodium salicylate decreases the severity of diarrhea and enterotoxigenic <i>Escherichia coli</i> F4 shedding in artificially infected piglets
Published 2020“…Feed additives, including bioactive compounds, could be a promising alternative. This study aimed to test two bioactive compounds, sodium salicylate (SA) and a chestnut extract (CE) containing hydrolysable tannins, on the occurrence of PWD. …”
-
13114
-
13115
Image_6_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13116
Image_9_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13117
Image_7_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13118
Image_10_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13119
Table_3_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.xls
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13120
Image_11_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”