Showing 961 - 980 results of 100,083 for search '(( 5 w decrease ) OR ( 5 ((step decrease) OR (((nn decrease) OR (a decrease)))) ))', query time: 1.50s Refine Results
  1. 961
  2. 962

    Table 8_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.xlsx by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  3. 963

    Table 4_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.xlsx by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  4. 964

    Image 4_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.tif by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  5. 965

    Table 3_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.xlsx by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  6. 966

    Image 3_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.tif by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  7. 967

    Table 6_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.docx by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  8. 968

    Table 2_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.docx by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  9. 969

    Image 2_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.tif by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  10. 970

    Table 1_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.xlsx by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  11. 971

    Image 1_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.jpeg by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  12. 972

    Table 7_Comparative genomics and metabolomics reveal phytohormone production, nutrient acquisition, and osmotic stress tolerance in Azotobacter chroococcum W5.xlsx by M. Elakkya (21760439)

    Published 2025
    “…Under salt and osmotic stress, A. chroococcum W5 metabolomic profiling revealed adaptive responses, including elevated levels of osmoprotectants (proline, glycerol) and oxidative stress markers such as 2-hydroxyglutarate, while putrescine and glycine decreased.…”
  13. 973
  14. 974
  15. 975

    Image_1_TRAPS mutations in Tnfrsf1a decrease the responsiveness to TNFα via reduced cell surface expression of TNFR1.tif by Takahiko Akagi (13138338)

    Published 2022
    “…T79M is a known mutation responsible for TRAPS, whereas G87V is a TRAPS mutation that we have reported, and T90I is a variant of unknown significance. …”
  16. 976

    Image_4_TRAPS mutations in Tnfrsf1a decrease the responsiveness to TNFα via reduced cell surface expression of TNFR1.tif by Takahiko Akagi (13138338)

    Published 2022
    “…T79M is a known mutation responsible for TRAPS, whereas G87V is a TRAPS mutation that we have reported, and T90I is a variant of unknown significance. …”
  17. 977

    Image_7_TRAPS mutations in Tnfrsf1a decrease the responsiveness to TNFα via reduced cell surface expression of TNFR1.tif by Takahiko Akagi (13138338)

    Published 2022
    “…T79M is a known mutation responsible for TRAPS, whereas G87V is a TRAPS mutation that we have reported, and T90I is a variant of unknown significance. …”
  18. 978

    Image_3_TRAPS mutations in Tnfrsf1a decrease the responsiveness to TNFα via reduced cell surface expression of TNFR1.tif by Takahiko Akagi (13138338)

    Published 2022
    “…T79M is a known mutation responsible for TRAPS, whereas G87V is a TRAPS mutation that we have reported, and T90I is a variant of unknown significance. …”
  19. 979

    Image_6_TRAPS mutations in Tnfrsf1a decrease the responsiveness to TNFα via reduced cell surface expression of TNFR1.tif by Takahiko Akagi (13138338)

    Published 2022
    “…T79M is a known mutation responsible for TRAPS, whereas G87V is a TRAPS mutation that we have reported, and T90I is a variant of unknown significance. …”
  20. 980

    Image_2_TRAPS mutations in Tnfrsf1a decrease the responsiveness to TNFα via reduced cell surface expression of TNFR1.tif by Takahiko Akagi (13138338)

    Published 2022
    “…T79M is a known mutation responsible for TRAPS, whereas G87V is a TRAPS mutation that we have reported, and T90I is a variant of unknown significance. …”