Showing 1,201 - 1,220 results of 101,423 for search '(( 5 we decrease ) OR ( 5 ((((step decrease) OR (mean decrease))) OR (a decrease)) ))', query time: 1.49s Refine Results
  1. 1201
  2. 1202
  3. 1203

    Stabilization of Hif-1α at early stages of infection leads to a decrease in bacterial burden. by Philip M. Elks (324793)

    Published 2013
    “…<p>(A) Quantification of bacterial burden by fluorescent pixel count after DMOG treatment between 5 and 6 dpi. …”
  4. 1204
  5. 1205
  6. 1206
  7. 1207
  8. 1208
  9. 1209
  10. 1210
  11. 1211
  12. 1212
  13. 1213

    Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals by Matthew A. Marcus (115744)

    Published 2017
    “…Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
  14. 1214

    Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals by Matthew A. Marcus (115744)

    Published 2017
    “…Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
  15. 1215

    Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals by Matthew A. Marcus (115744)

    Published 2017
    “…Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
  16. 1216

    Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals by Matthew A. Marcus (115744)

    Published 2017
    “…Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
  17. 1217
  18. 1218

    Filter-extruded niosomes decrease in size upon freezing and thawing. by Rianne Bartelds (1343631)

    Published 2018
    “…In contrast, cryo-EM pictures of liposomes composed of unsaturated lipids plus cholesterol without (D) and with five freeze and thaw cycles (E) appear similar in size but the degree of multilamellarity decreases by the freezing-thawing and subsequent extrusion step.…”
  19. 1219
  20. 1220