Showing 521 - 540 results of 60,114 for search '(( 5 we decrease ) OR ( 50 ((((ms decrease) OR (a decrease))) OR (nn decrease)) ))', query time: 1.08s Refine Results
  1. 521

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  2. 522

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  3. 523

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  4. 524

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  5. 525

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  6. 526

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  7. 527

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  8. 528

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  9. 529

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  10. 530

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  11. 531

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  12. 532
  13. 533
  14. 534
  15. 535

    Using climate envelope models to identify potential ecological trajectories on the Kenai Peninsula, Alaska by Dawn Robin Magness (6157265)

    Published 2018
    “…We use two lines of evidence, model convergence and empirically measured rates of change, to identify the following plausible ecological trajectories for the peninsula: (1.) alpine tundra and sub-alpine shrub decrease, (2.) perennial snow and ice decrease, (3.) forests remain on the Kenai Lowlands, (4.) the contiguous white-Lutz-Sitka spruce complex declines, and (5.) mixed conifer afforestation occurs along the Gulf of Alaska coast. …”
  16. 536
  17. 537
  18. 538
  19. 539

    Presentation_1_Eosinophils Decrease Pulmonary Metastatic Mammary Tumor Growth.pptx by Rachel A. Cederberg (12827564)

    Published 2022
    “…We found that IL5Tg mice exhibit reduced pulmonary metastatic colonization and decreased metastatic tumor burden compared to wild-type (WT) mice or eosinophil-deficient mice. …”
  20. 540