Search alternatives:
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 wt » _ wt (Expand Search), 5 ht (Expand Search)
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 wt » _ wt (Expand Search), 5 ht (Expand Search)
-
121
-
122
-
123
-
124
-
125
-
126
-
127
-
128
-
129
Solvent Entrapment of BI 763963 by Solid Solution Formation
Published 2025“…Two binary T-w phase diagrams were constructed showing the outline of the solidus and liquidus, where EtOH and IPA are present in the solid phase of BI 763963 at 0.54 and 1.5 wt %, respectively, at equilibrium. Importantly, the solvent solubility of BI 763963 was found to be dependent on the residual solvent level in the solid phase and in the case of EtOH increased by almost 50% at just 1.1 wt % EtOH entrapment. …”
-
130
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
131
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
132
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
133
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
134
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
135
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
136
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
137
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
138
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
139
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
140
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”