Showing 17,321 - 17,340 results of 100,737 for search '(( 5 wt decrease ) OR ( 5 ((point decrease) OR (((mean decrease) OR (a decrease)))) ))', query time: 1.04s Refine Results
  1. 17321
  2. 17322
  3. 17323

    Strong Electronic Communication by Direct Metal−Metal Interaction in Molecules with Halide-Bridged Dimolybdenum Pairs by F. Albert Cotton (1781341)

    Published 2006
    “…All three compounds show two reversible one-electron oxidation processes with potential separations (Δ<i>E</i><sub>1/2</sub>) between the two oxidation processes of 540, 499, and 440 mV, respectively. These Δ<i>E</i><sub>1/2</sub> values show that the strength of the electronic coupling between the dimetal units decreases as the Mo<sub>2</sub>···Mo<sub>2</sub> distance increases from <b>1</b> to <b>2</b>, and then to <b>3</b>. …”
  4. 17324
  5. 17325
  6. 17326
  7. 17327

    KAIST low-speed wind tunnel and its components. by Elliott Donghyun Kim (19469973)

    Published 2024
    “…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
  8. 17328

    Scattering efficiency by particle diameter. by Elliott Donghyun Kim (19469973)

    Published 2024
    “…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
  9. 17329

    Relative transmission rate by wavelength. by Elliott Donghyun Kim (19469973)

    Published 2024
    “…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
  10. 17330

    Failure mode of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  11. 17331

    Positions of AE probes and strain gauges. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  12. 17332

    Sampling site. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  13. 17333

    Received AE waves. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  14. 17334

    Test schemes for soft rocks. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  15. 17335

    Failure mode of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  16. 17336

    S1 Table - by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  17. 17337

    AE monitoring system. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  18. 17338

    MTS-370.25 fatigue resting system. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  19. 17339

    Schematic diagram of the AE testing system. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  20. 17340

    Strain at different positions of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”