Showing 7,321 - 7,340 results of 26,913 for search '(( 50 ((((ng decrease) OR (we decrease))) OR (a decrease)) ) OR ( 50 ms decrease ))', query time: 0.93s Refine Results
  1. 7321
  2. 7322

    A proposed model illustrates the dynamic and profound interaction of host polyamine biosynthesis and eIF5A hypusination with KSHV infection. by Guillaume N. Fiches (9300348)

    Published 2022
    “…At the early stage of lytic switch, KSHV ORF50/RTA gene starts to be actively transcribed upon certain stimuli, and the constant high level of hypusine-eIF5A ensures the efficient translation of RTA protein and overall promotes KSHV lytic reactivation. …”
  3. 7323

    Cooperative Effects of FOXL2 with the Members of TGF-β Superfamily on FSH Receptor mRNA Expression and Granulosa Cell Proliferation from Hen Prehierarchical Follicles by Ning Qin (418292)

    Published 2015
    “…In contrast, a significant decrease of <i>FSHR</i> mRNA was detected after treatment with follistatin (50 ng/ml) and resulted in an inhibitory effect on the cell proliferation. …”
  4. 7324

    Anti-interleukin-1 treatment in patients with rheumatoid arthritis and type 2 diabetes (TRACK): A multicentre, open-label, randomised controlled trial by Piero Ruscitti (3684799)

    Published 2019
    “…Participants in the TNFi group had a nonsignificant slight decrease of HbA1c%. Assuming the success threshold to be HbA1c% ≤ 7, we considered an absolute risk reduction (ARR) = 0.42 (experimental event rate = 0.54, control event rate = 0.12); thus, we estimated, rounding up, a number needed to treat (NNT) = 3. …”
  5. 7325

    Expression of transcription factor, fast-twitch fiber, and slow-twitch fiber genes following acute or chronic stimulation. by Michael A. Petrie (677819)

    Published 2014
    “…MYH6 (6.76±2.50, p = 0.030), MYH7 (11.69±4.93, p = 0.025), MYL2 (2.78±0.80, p = 0.063), and MYL3 (9.07±3.75, p = 0.046) were increased after >1 year of muscle training, while they were decreased 3 hours after single session of muscle stimulation (0.81±0.04, p = 0.0073, 0.77±0.073, p = 0.030, 0.92±0.036, p = 0.066, 0.76±0.078, p = 0.037; respectively) (I, J, K, and L). † indicates a p-value <0.05 for a within group paired t-test. ‡ indicates a p-value <0.10 for a within group paired t-test.…”
  6. 7326

    Data_Sheet_1_A five domains assessment of sow welfare in a novel free farrowing system.zip by Kate Plush (19369684)

    Published 2024
    “…MR 0.5 ± 0.29 events, p = 0.038, and back leg forward: FC 227 ± 50.7 vs. MR 127 ± 26.4 events, p = 0.019), and a decreased proportion of MR sows had facial injuries after farrowing (10% CI [5, 20] vs. 67% CI [47, 95], p < 0.001). …”
  7. 7327

    Data_Sheet_1_A five domains assessment of sow welfare in a novel free farrowing system.zip by Kate Plush (19369684)

    Published 2024
    “…MR 0.5 ± 0.29 events, p = 0.038, and back leg forward: FC 227 ± 50.7 vs. MR 127 ± 26.4 events, p = 0.019), and a decreased proportion of MR sows had facial injuries after farrowing (10% CI [5, 20] vs. 67% CI [47, 95], p < 0.001). …”
  8. 7328

    Exploring the Interaction Chemistry of Ammonia with <i>n</i>‑Hexadecane over Wide Pressure Ranges: An Experimental and Kinetic Modeling Study by Yongxiang Zhang (31421)

    Published 2024
    “…In this investigation, the ignition delay times (IDTs) of NH<sub>3</sub>/<i>n</i>C<sub>16</sub>H<sub>34</sub> mixtures were measured in a rapid compression machine at different NH<sub>3</sub> energy ratios (50%, 70%, and 90%), temperatures of 693–1047 K, pressures of 20–60 bar, and equivalence ratios of 0.5–1.0. …”
  9. 7329

    Exploring the Interaction Chemistry of Ammonia with <i>n</i>‑Hexadecane over Wide Pressure Ranges: An Experimental and Kinetic Modeling Study by Yongxiang Zhang (31421)

    Published 2024
    “…In this investigation, the ignition delay times (IDTs) of NH<sub>3</sub>/<i>n</i>C<sub>16</sub>H<sub>34</sub> mixtures were measured in a rapid compression machine at different NH<sub>3</sub> energy ratios (50%, 70%, and 90%), temperatures of 693–1047 K, pressures of 20–60 bar, and equivalence ratios of 0.5–1.0. …”
  10. 7330

    Exploring the Interaction Chemistry of Ammonia with <i>n</i>‑Hexadecane over Wide Pressure Ranges: An Experimental and Kinetic Modeling Study by Yongxiang Zhang (31421)

    Published 2024
    “…In this investigation, the ignition delay times (IDTs) of NH<sub>3</sub>/<i>n</i>C<sub>16</sub>H<sub>34</sub> mixtures were measured in a rapid compression machine at different NH<sub>3</sub> energy ratios (50%, 70%, and 90%), temperatures of 693–1047 K, pressures of 20–60 bar, and equivalence ratios of 0.5–1.0. …”
  11. 7331
  12. 7332

    Exploring the Interaction Chemistry of Ammonia with <i>n</i>‑Hexadecane over Wide Pressure Ranges: An Experimental and Kinetic Modeling Study by Yongxiang Zhang (31421)

    Published 2024
    “…In this investigation, the ignition delay times (IDTs) of NH<sub>3</sub>/<i>n</i>C<sub>16</sub>H<sub>34</sub> mixtures were measured in a rapid compression machine at different NH<sub>3</sub> energy ratios (50%, 70%, and 90%), temperatures of 693–1047 K, pressures of 20–60 bar, and equivalence ratios of 0.5–1.0. …”
  13. 7333

    Minidysferlin do not improve muscle histology. A by William Lostal (162211)

    Published 2012
    “…<b>D</b>/Quantification of CNF in muscles of <i>Dysf <sup>prmd</sup></i> mice that expressed an equivalent level of minidysferlin than dysferlin in normal muscle and 6 times this dose. No decrease in the number of CNF was seen with the dose giving a level of minidysferlin equivalent to the dysferlin expression (x=1) whereas an important increase in seen with the dose leading to a 6-fold increase of expression (x=6). …”
  14. 7334

    PmrAB-dependent lipid A modification. by Michael Knopp (3814009)

    Published 2021
    “…The top 50 proteins with the most significant change in abundance (lowest p-value) in the <i>pmrA</i> mutant are shown. …”
  15. 7335

    Main testing instruments for the experiment. by Chao Li (145513)

    Published 2024
    “…Compared to the traditional lower-side return air outlet <b><i>L</i></b>, the ranges of the non-uniformity coefficients for return air outlet <b><i>H</i></b> and <b><i>L</i></b> are 0.50 to 0.67 and 0.45 to 0.53, respectively. The average non-uniformity coefficient differs by 11.9%, and there is not a significant difference in uniformity with more than 20 air changes per hour. …”
  16. 7336

    Simulation major data. by Chao Li (145513)

    Published 2024
    “…Compared to the traditional lower-side return air outlet <b><i>L</i></b>, the ranges of the non-uniformity coefficients for return air outlet <b><i>H</i></b> and <b><i>L</i></b> are 0.50 to 0.67 and 0.45 to 0.53, respectively. The average non-uniformity coefficient differs by 11.9%, and there is not a significant difference in uniformity with more than 20 air changes per hour. …”
  17. 7337

    Numerical conditions. by Chao Li (145513)

    Published 2024
    “…Compared to the traditional lower-side return air outlet <b><i>L</i></b>, the ranges of the non-uniformity coefficients for return air outlet <b><i>H</i></b> and <b><i>L</i></b> are 0.50 to 0.67 and 0.45 to 0.53, respectively. The average non-uniformity coefficient differs by 11.9%, and there is not a significant difference in uniformity with more than 20 air changes per hour. …”
  18. 7338

    Airflow coefficients. by Chao Li (145513)

    Published 2024
    “…Compared to the traditional lower-side return air outlet <b><i>L</i></b>, the ranges of the non-uniformity coefficients for return air outlet <b><i>H</i></b> and <b><i>L</i></b> are 0.50 to 0.67 and 0.45 to 0.53, respectively. The average non-uniformity coefficient differs by 11.9%, and there is not a significant difference in uniformity with more than 20 air changes per hour. …”
  19. 7339

    <i>g</i> and <i>K</i><sub><i>c</i></sub> at different return air outlet heights. by Chao Li (145513)

    Published 2024
    “…Compared to the traditional lower-side return air outlet <b><i>L</i></b>, the ranges of the non-uniformity coefficients for return air outlet <b><i>H</i></b> and <b><i>L</i></b> are 0.50 to 0.67 and 0.45 to 0.53, respectively. The average non-uniformity coefficient differs by 11.9%, and there is not a significant difference in uniformity with more than 20 air changes per hour. …”
  20. 7340

    <i>K</i><sub><i>c</i></sub> at ACH = 35/h. by Chao Li (145513)

    Published 2024
    “…Compared to the traditional lower-side return air outlet <b><i>L</i></b>, the ranges of the non-uniformity coefficients for return air outlet <b><i>H</i></b> and <b><i>L</i></b> are 0.50 to 0.67 and 0.45 to 0.53, respectively. The average non-uniformity coefficient differs by 11.9%, and there is not a significant difference in uniformity with more than 20 air changes per hour. …”