Search alternatives:
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nm decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nm decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
-
61
-
62
Fluorescent intensity at 520 nm (RNase A/B) and 556 nm (DNase I) versus time for nucleases in DI water lysed with Lyse-It at 30% and 50% power for varying time.
Published 2019“…<b>(A)</b> 20 pM RNase A <b>(B)</b> 46 pM RNase B, <b>(C)</b> 10.5 nM DNase I. As microwave power and time increase, nuclease activity decreases.…”
-
63
Net work vs phase of activation and lattice spacing. Top) We simulated work loops in the half sarcomere model at phases of activation of 0 to 0.95 in 0.05 increments, as well as over lattice spacings from 12 to 18 nm and plotted the new work for each condition. Bottom) We then simulated work loops over the same range, but with the stiffness of either the linear or torsional spring comprising the crossbridge head increased or decreased by 50% separately....
Published 2025“…Bottom) We then simulated work loops over the same range, but with the stiffness of either the linear or torsional spring comprising the crossbridge head increased or decreased by 50% separately. …”
-
64
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…Heat treating a simple slurry, composed only of water, acetone, carbon black, and lead acetate, formed a porous carbon network decorated with PbO<sub><i>x</i></sub> (0 ≤ <i>x</i> ≤ 2) nanoparticles between 10 and 50 nm. …”
-
65
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…Heat treating a simple slurry, composed only of water, acetone, carbon black, and lead acetate, formed a porous carbon network decorated with PbO<sub><i>x</i></sub> (0 ≤ <i>x</i> ≤ 2) nanoparticles between 10 and 50 nm. …”
-
66
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…Heat treating a simple slurry, composed only of water, acetone, carbon black, and lead acetate, formed a porous carbon network decorated with PbO<sub><i>x</i></sub> (0 ≤ <i>x</i> ≤ 2) nanoparticles between 10 and 50 nm. …”
-
67
-
68
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
69
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
70
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
71
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
72
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
73
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
74
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
75
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
76
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
77
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
78
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
79
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
80
Influence of Interfacial Gas Enrichment on Controlled Coalescence of Oil Droplets in Water in Microfluidics
Published 2019“…When the amount of dissolved gases (oxygen) in oil decreases (from 7.89 to 4.59 mg/L), the average drainage time of coalescence significantly increases (from 19 to 50 ms). …”