Showing 881 - 900 results of 31,788 for search '(( 50 ((((ppm decrease) OR (nn decrease))) OR (a decrease)) ) OR ( a step decrease ))', query time: 0.76s Refine Results
  1. 881
  2. 882

    Table1_Apoptotic volume decrease (AVD) in A549 cells exposed to water-soluble fraction of particulate matter (PM10).DOCX by M. E. Giordano (16517169)

    Published 2023
    “…In particular, the study addressed if PM<sub>10</sub> exposure can be a main factor in the induction of the Apoptotic Volume Decrease (AVD), which is one of the first events of apoptosis, and if the generation of intracellular oxidative stress can be involved in the PM<sub>10</sub> induction of apoptosis in A549 cells. …”
  3. 883

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  4. 884

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  5. 885

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  6. 886

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  7. 887

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  8. 888

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  9. 889

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  10. 890

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  11. 891

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  12. 892

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  13. 893

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  14. 894

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ∼8, and dynamical barrier recrossings decrease the rates by a factor of 3−4. …”
  15. 895
  16. 896
  17. 897
  18. 898
  19. 899

    Netrin-1 overexpression increases HCV RNA and specific infectivity of HCV virions in vitro whereas Netrin-1 depletion decreases HCV RNA and specific infectivity in vitro. by Marie-Laure Plissonnier (337713)

    Published 2016
    “…<b>L</b>. Netrin-1 depletion decreases specific infectivity of virions. Specific infectivity was calculated for each collected fraction using the TCID<sub>50</sub>/HCV RNA ratio. …”
  20. 900