Showing 1,161 - 1,180 results of 30,761 for search '(( 50 ((((we decrease) OR (nn decrease))) OR (a decrease)) ) OR ( 2 step decrease ))', query time: 0.93s Refine Results
  1. 1161
  2. 1162
  3. 1163
  4. 1164
  5. 1165

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  6. 1166

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  7. 1167

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  8. 1168

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  9. 1169

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  10. 1170

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  11. 1171

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  12. 1172

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  13. 1173

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  14. 1174

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  15. 1175

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  16. 1176

    Hybrid Quantum/Classical Molecular Dynamics Simulations of the Proton Transfer Reactions Catalyzed by Ketosteroid Isomerase: Analysis of Hydrogen Bonding, Conformational Motions, a... by Dhruva K. Chakravorty (1420549)

    Published 2009
    “…The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. …”
  17. 1177
  18. 1178
  19. 1179
  20. 1180

    Netrin-1 overexpression increases HCV RNA and specific infectivity of HCV virions in vitro whereas Netrin-1 depletion decreases HCV RNA and specific infectivity in vitro. by Marie-Laure Plissonnier (337713)

    Published 2016
    “…<b>L</b>. Netrin-1 depletion decreases specific infectivity of virions. Specific infectivity was calculated for each collected fraction using the TCID<sub>50</sub>/HCV RNA ratio. …”