Showing 11,561 - 11,580 results of 61,189 for search '(( 50 ((a decrease) OR (mean decrease)) ) OR ( 5 ((we decrease) OR (nn decrease)) ))', query time: 0.76s Refine Results
  1. 11561
  2. 11562
  3. 11563

    Effects of Sediment Characteristics on the Toxicity of Chromium(III) and Chromium(VI) to the Amphipod, <i>Hyalella azteca</i> by John M. Besser (467734)

    Published 2004
    “…Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC<sub>50</sub>) of 40 μg/L. …”
  4. 11564

    Table_5_Mapping Cucumber Vein Yellowing Virus Resistance in Cucumber (Cucumis sativus L.) by Using BSA-seq Analysis.xlsx by Marta Pujol (7043837)

    Published 2019
    “…By using a customized bioinformatics pipeline, we identified a unique region in chromosome 5 associated to resistance to CVYV, explaining more than 80% of the variability. …”
  5. 11565
  6. 11566

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  7. 11567

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  8. 11568

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  9. 11569

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  10. 11570

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  11. 11571

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  12. 11572

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  13. 11573

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  14. 11574

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  15. 11575

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  16. 11576

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  17. 11577

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  18. 11578

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  19. 11579

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  20. 11580

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”