Search alternatives:
we decrease » _ decrease (Expand Search), teer decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
we decrease » _ decrease (Expand Search), teer decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
14121
-
14122
DataSheet1_miR-21-5p/PRKCE axis implicated in immune infiltration and poor prognosis of kidney renal clear cell carcinoma.PDF
Published 2022“…We found that PRKCE decreased in KIRC tumor tissue compared to normal tissue. …”
-
14123
DataSheet_1_Blood Transcriptomes of Anti-SARS-CoV-2 Antibody-Positive Healthy Individuals Who Experienced Asymptomatic Versus Clinical Infection.pdf
Published 2021“…Among 12.789 protein-coding genes analysed, we identified six and nine genes with significantly decreased or increased expression, respectively, in those with prior asymptomatic infection relatively to those with clinical infection. …”
-
14124
-
14125
-
14126
-
14127
-
14128
Quantitative Imaging of the Action of vCPP2319, an Antimicrobial Peptide from a Viral Scaffold, against <i>Staphylococcus aureus</i> Biofilms of a Clinical Isolate
Published 2023“…In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. …”
-
14129
Quantitative Imaging of the Action of vCPP2319, an Antimicrobial Peptide from a Viral Scaffold, against <i>Staphylococcus aureus</i> Biofilms of a Clinical Isolate
Published 2023“…In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. …”
-
14130
Quantitative Imaging of the Action of vCPP2319, an Antimicrobial Peptide from a Viral Scaffold, against <i>Staphylococcus aureus</i> Biofilms of a Clinical Isolate
Published 2023“…In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. …”
-
14131
-
14132
Quantitative Imaging of the Action of vCPP2319, an Antimicrobial Peptide from a Viral Scaffold, against <i>Staphylococcus aureus</i> Biofilms of a Clinical Isolate
Published 2023“…In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. …”
-
14133
-
14134
Image_6_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
14135
Image_9_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
14136
Image_7_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
14137
Image2_CircGSAP regulates the cell cycle of pulmonary microvascular endothelial cells via the miR-942-5p sponge in pulmonary hypertension.tif
Published 2022“…Dual luciferase reporter assays showed that circGSAP acted as a competitive endogenous RNA regulating miR-942-5p, and identified SMAD4 as a target gene of miR-942-5p, Then, we verified the functions of miR-942-5p and SMAD4 in PMECs. …”
-
14138
Table_5_Single-cell transcriptomic analysis of hematopoietic progenitor cells from patients with systemic lupus erythematosus reveals interferon-inducible reprogramming in early pr...
Published 2024“…Introduction<p>Immune cells that contribute to the pathogenesis of systemic lupus erythematosus (SLE) derive from adult hematopoietic stem and progenitor cells (HSPCs) within the bone marrow (BM). For this reason, we reasoned that fundamental abnormalities in SLE can be traced to a BM-derived HSPC inflammatory signature.…”
-
14139
Image_10_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
14140
Table_3_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.xls
Published 2022“…The low content of tanshinones (terpenoids) has always restricted development of the S. miltiorrhiza industry. Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”