Search alternatives:
ns decrease » nn decrease (Expand Search), _ decrease (Expand Search), use decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
ns decrease » nn decrease (Expand Search), _ decrease (Expand Search), use decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1081
-
1082
-
1083
-
1084
Adaptation to cool temperature decreases basal and stimulated lipolysis and increases <i>de novo</i> lipogenesis and TAG synthesis.
Published 2021“…<i>n =</i> 5, data are mean ± SD. *<i>p</i> < 0.05. Uncropped western blots are provided in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3000988#pbio.3000988.s016" target="_blank">S1 Raw Images</a>, and numerical data for all graphs are provided in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3000988#pbio.3000988.s014" target="_blank">S6 Data</a>. …”
-
1085
-
1086
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1087
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1088
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1089
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1090
-
1091
-
1092
Capsaicin, pyridoxine, vincristine sulfate and ionomycin significantly decreased axon length ratio but only pyridoxine had no impact on neurotoxicity.
Published 2024“…At a lower dose, 50 μM Pyr, did not induce significant change in axon length ratio over time and between PBS control in both female and male rat DRGs. …”
-
1093
-
1094
-
1095
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
1096
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
1097
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
1098
-
1099
-
1100