Showing 961 - 980 results of 27,241 for search '(( 50 ((a decrease) OR (mean decrease)) ) OR ( 50 ((we decrease) OR (teer decrease)) ))', query time: 1.01s Refine Results
  1. 961
  2. 962
  3. 963

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  4. 964

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  5. 965

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  6. 966

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  7. 967
  8. 968
  9. 969
  10. 970
  11. 971
  12. 972

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
  13. 973

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
  14. 974

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
  15. 975

    Inhibition of GLS1 decreases the proportion of CCR6 and CXCR3 expressing CD4<sup>+</sup> T cells. by Zeynep Sener (3146064)

    Published 2016
    “…(B–C) The proportion of CCR6 expressing cells at day 3 (left) and day 5 (right) under normoxia (black bars) and hypoxia (grey bars) in the presence (+) and absence (-) of 25 μM BPTES and 50 μM 968. BPTES and 968 significantly decrease the proportion of CCR6 expressing cells under normoxia both at day 3 and 5, whereas 968 but not BPTES decrease the proportion of CCR6 expressing cells under hypoxia both at day 3 and 5. …”
  16. 976
  17. 977
  18. 978

    Female EIIIA-cFN null mice have decreased accumulation of intracellular lipids at day 2 after PHx. by Bridget Sackey-Aboagye (3221319)

    Published 2016
    “…Oil Red O staining was decreased in female EIIIA-cFN null mice <b>(B)</b> in comparison to wild type littermates <b>(A)</b>. …”
  19. 979
  20. 980