Showing 521 - 540 results of 31,591 for search '(( 50 ((a decrease) OR (nn decrease)) ) OR ( 10 ((nm decrease) OR (teer decrease)) ))', query time: 0.64s Refine Results
  1. 521
  2. 522
  3. 523
  4. 524
  5. 525
  6. 526
  7. 527
  8. 528
  9. 529
  10. 530
  11. 531
  12. 532
  13. 533
  14. 534
  15. 535
  16. 536

    High-Reflectivity Force-Chromic Photonic Crystal Elastic Materials Based on Nanospheres within an Elastomer for Applications in Sensing and Textile Fields by Zhichuang Qi (20539399)

    Published 2025
    “…Due to the absence of solvents in the elastic system, the FPE has excellent stability, and the structural color remains unchanged under 50 stretch/release cycling experiments. This FPE not only has a simple preparation method, fast response, high reflectivity, and good stability, but we have found through validation experiments that it has great potential in the fields of sensing, signal transmission, and smart textiles.…”
  17. 537

    High-Reflectivity Force-Chromic Photonic Crystal Elastic Materials Based on Nanospheres within an Elastomer for Applications in Sensing and Textile Fields by Zhichuang Qi (20539399)

    Published 2025
    “…Due to the absence of solvents in the elastic system, the FPE has excellent stability, and the structural color remains unchanged under 50 stretch/release cycling experiments. This FPE not only has a simple preparation method, fast response, high reflectivity, and good stability, but we have found through validation experiments that it has great potential in the fields of sensing, signal transmission, and smart textiles.…”
  18. 538

    High-Reflectivity Force-Chromic Photonic Crystal Elastic Materials Based on Nanospheres within an Elastomer for Applications in Sensing and Textile Fields by Zhichuang Qi (20539399)

    Published 2025
    “…Due to the absence of solvents in the elastic system, the FPE has excellent stability, and the structural color remains unchanged under 50 stretch/release cycling experiments. This FPE not only has a simple preparation method, fast response, high reflectivity, and good stability, but we have found through validation experiments that it has great potential in the fields of sensing, signal transmission, and smart textiles.…”
  19. 539
  20. 540