Showing 1,041 - 1,060 results of 27,262 for search '(( 50 ((a decrease) OR (nn decrease)) ) OR ( 50 ((ns decrease) OR (we decrease)) ))', query time: 1.13s Refine Results
  1. 1041

    Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q‑Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer by Sibylle Pfammatter (3226209)

    Published 2021
    “…However, the FAIMS interface has not been available on older generation Orbitrap mass spectrometers such as the Q-Exactive. Here, we report the integration of the FAIMS Pro device with embedded electrical and gas connections to a Q-Exactive HF mass spectrometer. …”
  2. 1042

    Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q‑Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer by Sibylle Pfammatter (3226209)

    Published 2021
    “…However, the FAIMS interface has not been available on older generation Orbitrap mass spectrometers such as the Q-Exactive. Here, we report the integration of the FAIMS Pro device with embedded electrical and gas connections to a Q-Exactive HF mass spectrometer. …”
  3. 1043
  4. 1044
  5. 1045
  6. 1046
  7. 1047
  8. 1048
  9. 1049

    Bacterial strains and plasmids. by Eunsil Choi (8271039)

    Published 2025
    “…Our previous research showed that deleting <i>bipA</i> in <i>Escherichia coli</i> at 20°C leads to a defect in 50S ribosomal assembly and impaired lipopolysaccharide (LPS) synthesis. …”
  10. 1050
  11. 1051

    TMD residues decrease sensitivity. by Ákos Nemecz (356830)

    Published 2017
    “…Glu residues are color coded based upon effect, with residues in red producing a significant decrease in pH<sub>50</sub>, and in yellow, an insignificant or weak effect, whereas the dark purple and magenta for His residues are synonymous to the red of Glu residues. …”
  12. 1052

    Analysis of Research Activity in Gastroenterology: Pancreatitis Is in Real Danger by Andrea Szentesi (3239193)

    Published 2016
    “…<div><p>Objective</p><p>Biomedical investment trends in 2015 show a huge decrease of investment in gastroenterology. …”
  13. 1053
  14. 1054

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  15. 1055

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  16. 1056

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  17. 1057

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  18. 1058

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  19. 1059

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  20. 1060

    S1 File - by Michael Gulledge (20577135)

    Published 2025
    “…During withdrawal, there was a profound loss (peaking on days 2–3) and gradual return of diurnal structure in sleep, body temperature, and locomotor activity, as well as decreased sleep and wake bout durations dependent on lights on/off. …”