Search alternatives:
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
we decrease » _ decrease (Expand Search), teer decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
we decrease » _ decrease (Expand Search), teer decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1081
-
1082
-
1083
-
1084
-
1085
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1086
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1087
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1088
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1089
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
1090
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
1091
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
1092
-
1093
-
1094
-
1095
-
1096
-
1097
-
1098
-
1099
-
1100