Showing 41,161 - 41,180 results of 70,370 for search '(( 50 ((a decrease) OR (we decrease)) ) OR ( a ((mean decrease) OR (point decrease)) ))', query time: 1.28s Refine Results
  1. 41161

    File S1 - Impaired Functionality of Antiviral T Cells in G-CSF Mobilized Stem Cell Donors: Implications for the Selection of CTL Donor by Carola E. Bunse (492512)

    Published 2013
    “…The percentage of IFN-γ-expressing cells decreased after G-CSF. A strong effect was achieved using 10 ng/ml G-CSF. …”
  2. 41162

    Variations of the torque variables during the exercise protocol. by Baptiste Morel (728366)

    Published 2015
    “…<p>Mean torque (T<sub>mean</sub>), peak torque (T<sub>peak</sub>) and rate of torque development (RTD) decrease over the 20 sets (A) as well as the multiple linear regression of T<sub>mean</sub> predicted by T<sub>peak</sub> and RTD (B) is presented. …”
  3. 41163
  4. 41164

    Diagnosis noma study Anka General Hospital 2021. by Elise Farley (4915459)

    Published 2023
    “…</p><p>Methods</p><p>We conducted a prospective observational study from 1<sup>st</sup> June to 24<sup>th</sup> October 2021, enrolling patients aged 0 to 12 years who were admitted to the Anka General Hospital, Zamfara, northwest Nigeria. …”
  5. 41165

    Proportion of correct choice versus trial number. by John Palmer (680790)

    Published 2017
    “…The final success rate of 80% is similar to that observed in experimental studies (75% in [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005669#pcbi.1005669.ref006" target="_blank">6</a>]).…”
  6. 41166

    Combined expression of pTFs promotes transdifferentiation efficiency, however only their sequential expression increases β-cell maturation. by Dana Berneman-Zeitouni (519463)

    Published 2014
    “…*<i>p<0.05</i>, n≥8 in 4 independent experiments preformed in cells isolated from different donors. The arrow points to the specific decrease in Isl1 expression level under the C-protocol, sequential and direct hierarchical administration of pTFs.…”
  7. 41167

    <i>Spo11<sup>+/+</sup></i> and <i>Spo11<sup>+/−</sup></i> animals. by Brian Baier (517434)

    Published 2014
    “…<p>(<b>A</b>) Mice heterozygous for a null allele of <i>Spo11</i> exhibited a significant decrease in RAD51 foci (a marker of DSBs) by comparison to wildtype littermates. …”
  8. 41168

    Data_Sheet_1_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.DOCX... by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  9. 41169

    Table_13_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  10. 41170

    Table_12_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  11. 41171

    Table_6_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  12. 41172

    Table_3_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  13. 41173

    Table_5_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  14. 41174

    Table_2_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  15. 41175

    Table_9_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  16. 41176

    Table_11_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  17. 41177

    Table_7_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  18. 41178

    Table_4_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  19. 41179

    Table_1_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.docx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  20. 41180

    Table_10_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”