Showing 1,041 - 1,060 results of 42,355 for search '(( 50 ((a decrease) OR (we decrease)) ) OR ( a ((point decrease) OR (nn decrease)) ))', query time: 1.01s Refine Results
  1. 1041
  2. 1042

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…The addition of ArNO to 2 equiv of [Me<sub>2</sub>NN]Ni(2,4-lutidine) {[Me<sub>2</sub>NN]<sup>−</sup> = 2,4-bis(2,6-dimethylphenylimido)pentyl} gives {[Me<sub>2</sub>NN]Ni}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>2</sup>-ONAr) (<b>1a</b> and <b>1b</b>), which exhibit symmetrical bonding of the ArNO moiety between two [Me<sub>2</sub>NN]Ni fragments, with a N−O bond distance of 1.440(4) Å in <b>1a</b> that is significantly longer than those in free <i>C</i>-organonitroso compounds (1.13−1.29 Å). …”
  3. 1043

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…The addition of ArNO to 2 equiv of [Me<sub>2</sub>NN]Ni(2,4-lutidine) {[Me<sub>2</sub>NN]<sup>−</sup> = 2,4-bis(2,6-dimethylphenylimido)pentyl} gives {[Me<sub>2</sub>NN]Ni}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>2</sup>-ONAr) (<b>1a</b> and <b>1b</b>), which exhibit symmetrical bonding of the ArNO moiety between two [Me<sub>2</sub>NN]Ni fragments, with a N−O bond distance of 1.440(4) Å in <b>1a</b> that is significantly longer than those in free <i>C</i>-organonitroso compounds (1.13−1.29 Å). …”
  4. 1044

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…The addition of ArNO to 2 equiv of [Me<sub>2</sub>NN]Ni(2,4-lutidine) {[Me<sub>2</sub>NN]<sup>−</sup> = 2,4-bis(2,6-dimethylphenylimido)pentyl} gives {[Me<sub>2</sub>NN]Ni}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>2</sup>-ONAr) (<b>1a</b> and <b>1b</b>), which exhibit symmetrical bonding of the ArNO moiety between two [Me<sub>2</sub>NN]Ni fragments, with a N−O bond distance of 1.440(4) Å in <b>1a</b> that is significantly longer than those in free <i>C</i>-organonitroso compounds (1.13−1.29 Å). …”
  5. 1045

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…The addition of ArNO to 2 equiv of [Me<sub>2</sub>NN]Ni(2,4-lutidine) {[Me<sub>2</sub>NN]<sup>−</sup> = 2,4-bis(2,6-dimethylphenylimido)pentyl} gives {[Me<sub>2</sub>NN]Ni}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>2</sup>-ONAr) (<b>1a</b> and <b>1b</b>), which exhibit symmetrical bonding of the ArNO moiety between two [Me<sub>2</sub>NN]Ni fragments, with a N−O bond distance of 1.440(4) Å in <b>1a</b> that is significantly longer than those in free <i>C</i>-organonitroso compounds (1.13−1.29 Å). …”
  6. 1046

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…The addition of ArNO to 2 equiv of [Me<sub>2</sub>NN]Ni(2,4-lutidine) {[Me<sub>2</sub>NN]<sup>−</sup> = 2,4-bis(2,6-dimethylphenylimido)pentyl} gives {[Me<sub>2</sub>NN]Ni}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>2</sup>-ONAr) (<b>1a</b> and <b>1b</b>), which exhibit symmetrical bonding of the ArNO moiety between two [Me<sub>2</sub>NN]Ni fragments, with a N−O bond distance of 1.440(4) Å in <b>1a</b> that is significantly longer than those in free <i>C</i>-organonitroso compounds (1.13−1.29 Å). …”
  7. 1047

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…The addition of ArNO to 2 equiv of [Me<sub>2</sub>NN]Ni(2,4-lutidine) {[Me<sub>2</sub>NN]<sup>−</sup> = 2,4-bis(2,6-dimethylphenylimido)pentyl} gives {[Me<sub>2</sub>NN]Ni}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>2</sup>-ONAr) (<b>1a</b> and <b>1b</b>), which exhibit symmetrical bonding of the ArNO moiety between two [Me<sub>2</sub>NN]Ni fragments, with a N−O bond distance of 1.440(4) Å in <b>1a</b> that is significantly longer than those in free <i>C</i>-organonitroso compounds (1.13−1.29 Å). …”
  8. 1048
  9. 1049
  10. 1050
  11. 1051

    Quantitative Influenza Follow-Up Testing (QIFT)—A Novel Biomarker for the Monitoring of Disease Activity at the Point-of-Care by Xi Chen (35903)

    Published 2014
    “…A “switch” from positive to negative values may indicate a drop in viral load below a critical threshold, where rebound is no longer expected. …”
  12. 1052

    S1 Dataset - by Siwar Garrouch (15426810)

    Published 2023
    “…</p><p>Results</p><p>We have pointed out a significant decrease in both total and progressive sperm motility during COVID-19 pandemic (p<0.0001 and p = 0.001 respectively). …”
  13. 1053
  14. 1054

    Evaluation index results for the JS-10 phantom. by Masakazu Tsujimoto (22339504)

    Published 2025
    “…In conclusion, accurate SUV measurement with ¹²³I-MIBG requires an acquisition time of ≥50 s/view, an SI product of approximately 120, and a Gaussian filter of 10 − 12 mm. …”
  15. 1055

    NEMA IEC body phantom. by Masakazu Tsujimoto (22339504)

    Published 2025
    “…In conclusion, accurate SUV measurement with ¹²³I-MIBG requires an acquisition time of ≥50 s/view, an SI product of approximately 120, and a Gaussian filter of 10 − 12 mm. …”
  16. 1056

    Relationship between contrast, noise, and CNR. by Masakazu Tsujimoto (22339504)

    Published 2025
    “…In conclusion, accurate SUV measurement with ¹²³I-MIBG requires an acquisition time of ≥50 s/view, an SI product of approximately 120, and a Gaussian filter of 10 − 12 mm. …”
  17. 1057

    JS-10 phantom. by Masakazu Tsujimoto (22339504)

    Published 2025
    “…In conclusion, accurate SUV measurement with ¹²³I-MIBG requires an acquisition time of ≥50 s/view, an SI product of approximately 120, and a Gaussian filter of 10 − 12 mm. …”
  18. 1058

    The raw data used for the analyses in this study. by Masakazu Tsujimoto (22339504)

    Published 2025
    “…In conclusion, accurate SUV measurement with ¹²³I-MIBG requires an acquisition time of ≥50 s/view, an SI product of approximately 120, and a Gaussian filter of 10 − 12 mm. …”
  19. 1059
  20. 1060

    Combining stabilizing point mutations from different Env variants produces a hyperstable virus, comb-mut. by Daniel P. Leaman (105329)

    Published 2013
    “…(<b>B</b>) The relative resistance of comb-mut to ligand-induced infectivity decay is shown as a function of the fold decrease in IC50 after 20 hour pre-incubation relative to 1 hour pre-incubation as described in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1003184#ppat-1003184-g008" target="_blank"><b>Figure 8</b></a>. …”