Showing 16,841 - 16,860 results of 27,447 for search '(( 50 ((c decrease) OR (a decrease)) ) OR ( 50 ((026 decrease) OR (mean decrease)) ))', query time: 0.97s Refine Results
  1. 16841
  2. 16842
  3. 16843

    Image 1_Epidemiological characteristics of severe fever with thrombocytopenia syndrome and the relationship with meteorological factors in Jiangsu Province, China.tif by Yuhao Tao (22152865)

    Published 2025
    “…However, excessively high temperatures can also lead to a decrease in the incidence of SFTS. Targeted strategies and measures should be taken to prevent its spread.…”
  4. 16844

    Image 2_Epidemiological characteristics of severe fever with thrombocytopenia syndrome and the relationship with meteorological factors in Jiangsu Province, China.tif by Yuhao Tao (22152865)

    Published 2025
    “…However, excessively high temperatures can also lead to a decrease in the incidence of SFTS. Targeted strategies and measures should be taken to prevent its spread.…”
  5. 16845

    Supplementary file 1_Epidemiological characteristics of severe fever with thrombocytopenia syndrome and the relationship with meteorological factors in Jiangsu Province, China.docx by Yuhao Tao (22152865)

    Published 2025
    “…However, excessively high temperatures can also lead to a decrease in the incidence of SFTS. Targeted strategies and measures should be taken to prevent its spread.…”
  6. 16846

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  7. 16847

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  8. 16848

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  9. 16849

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  10. 16850

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  11. 16851

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  12. 16852

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  13. 16853

    Regulation of macroscopic Cx46 currents by external Ca and Mg by Vytas K. Verselis (53583)

    Published 2011
    “…(A) Representative current–voltage (I-V) relationships (top) at different external Ca concentrations ranging from nominal (0 added) to 1.8 mM were obtained by applying slow (3 min) voltage ramps from +50 to −100 mV to a Cx46-expressing oocyte. …”
  14. 16854

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  15. 16855

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  16. 16856

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  17. 16857

    Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings by Yi Hou (148620)

    Published 2021
    “…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
  18. 16858

    CEMP1 induces anchorage-independent growth in HGF cells. by Mercedes Bermúdez (483146)

    Published 2015
    “…RT-qPCR showed that RNAi against CEMP1 decreased its expression in more than 50% at transcriptional level (A). …”
  19. 16859

    File S1 - Impaired Functionality of Antiviral T Cells in G-CSF Mobilized Stem Cell Donors: Implications for the Selection of CTL Donor by Carola E. Bunse (492512)

    Published 2013
    “…After 48 h of storage at 4°C, a mean of 93% (mCMV_pp65_A02, n = 4) and 96% (mCMV_pp65_B07, n = 5) of the frequency in the fresh sample (baseline) was obtained. …”
  20. 16860