Showing 5,121 - 5,140 results of 30,491 for search '(( 50 ((mean decrease) OR (((nn decrease) OR (a decrease)))) ) OR ( 2 step decrease ))', query time: 0.66s Refine Results
  1. 5121
  2. 5122
  3. 5123
  4. 5124
  5. 5125
  6. 5126
  7. 5127
  8. 5128

    Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition by Jianchuang Wang (2898131)

    Published 2022
    “…The GO/LCN composite film is prepared by the one-step polymerization of LC monomers, which favors a splay orientation in LC cells made by gluing together two glass sheets, one coated with photothermal agent GO and the other coated with a rubbed polyimide alignment layer. …”
  9. 5129

    Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition by Jianchuang Wang (2898131)

    Published 2022
    “…The GO/LCN composite film is prepared by the one-step polymerization of LC monomers, which favors a splay orientation in LC cells made by gluing together two glass sheets, one coated with photothermal agent GO and the other coated with a rubbed polyimide alignment layer. …”
  10. 5130

    Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition by Jianchuang Wang (2898131)

    Published 2022
    “…The GO/LCN composite film is prepared by the one-step polymerization of LC monomers, which favors a splay orientation in LC cells made by gluing together two glass sheets, one coated with photothermal agent GO and the other coated with a rubbed polyimide alignment layer. …”
  11. 5131

    Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition by Jianchuang Wang (2898131)

    Published 2022
    “…The GO/LCN composite film is prepared by the one-step polymerization of LC monomers, which favors a splay orientation in LC cells made by gluing together two glass sheets, one coated with photothermal agent GO and the other coated with a rubbed polyimide alignment layer. …”
  12. 5132

    Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition by Jianchuang Wang (2898131)

    Published 2022
    “…The GO/LCN composite film is prepared by the one-step polymerization of LC monomers, which favors a splay orientation in LC cells made by gluing together two glass sheets, one coated with photothermal agent GO and the other coated with a rubbed polyimide alignment layer. …”
  13. 5133

    image2_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  14. 5134

    presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx by Xin Zhi (1829224)

    Published 2021
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  15. 5135

    image3_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  16. 5136

    presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  17. 5137

    presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  18. 5138

    image1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  19. 5139

    image1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif by Xin Zhi (1829224)

    Published 2021
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  20. 5140

    image3_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”