Showing 381 - 400 results of 113,108 for search '(( 50 ((mean decrease) OR (a decrease)) ) OR ( 10 ((nm decrease) OR (we decrease)) ))', query time: 1.05s Refine Results
  1. 381
  2. 382
  3. 383
  4. 384

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  5. 385

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  6. 386

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  7. 387

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  8. 388

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  9. 389

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  10. 390
  11. 391
  12. 392
  13. 393
  14. 394
  15. 395
  16. 396

    HDM exposure results in increased MIP-2 and decreased IFNα and IL-13. by Jennifer A. Phan (535730)

    Published 2014
    “…HDM exposure increased bronchoalveolar lavage MIP-2 (A), and decreased IFNα (B) and IL13 (C). There was no effect of HDM exposure on BAL protein (D), nor were there any effects of HRV-1B infection alone, or combined effects of HDM exposure and HRV-1B infection on any of these parameters. * indicates a significant difference between groups. …”
  17. 397
  18. 398
  19. 399
  20. 400