Search alternatives:
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
6241
-
6242
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
6243
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
6244
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
6245
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
6246
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
6247
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
6248
-
6249
-
6250
-
6251
-
6252
S1 File -
Published 2025“…During withdrawal, there was a profound loss (peaking on days 2–3) and gradual return of diurnal structure in sleep, body temperature, and locomotor activity, as well as decreased sleep and wake bout durations dependent on lights on/off. …”
-
6253
-
6254
-
6255
S1 File -
Published 2025“…All examinations were reviewed by one single board-certified specialist in cardiology.</p><p>Results</p><p>A total of 921 dogs were screened during the study period (female:male sex ratio = 1.94, median age [IQR] = 1.9 years [1.6–2.7], body weight = 55.0 kg [50–60]). …”
-
6256
-
6257
-
6258
-
6259
-
6260
Study flow chart.
Published 2025“…The Commonest ADC was Kaposi Sarcoma (KS) while the commonest NADC was Squamous cell carcinoma, Not otherwise specified. Age above 50 years was associated with a significantly reduced risk of ADCs (OR: 0.11; 95% CI: 0.03–0.43; p value: 0.002). …”