Search alternatives:
teer decrease » greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
33241
Splenectomy Associated Changes in IgM Memory B Cells in an Adult Spleen Registry Cohort
Published 2011“…Changes of asplenia in routine blood films including presence of Howell-Jolly bodies (HJB), occurred early (median 25 days) and splenectomy associated thrombocytosis and lymphocytosis peaked by 50 days. There was a more gradual decrease in IgM memory B cells reaching a stable level within 6 months after splenectomy. …”
-
33242
Source data file.
Published 2024“…We studied Type 1 diabetes (T1D) as a paradigmatic example of autoimmunity. In T1D, variation in the Human Leucocyte Antigen (HLA) genes explains up to 50% of the genetic risk, indicating that T cells have a major role in T1D etiopathogenesis. …”
-
33243
Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings
Published 2021“…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
-
33244
Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings
Published 2021“…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
-
33245
Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings
Published 2021“…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
-
33246
Image_1_Poly I:C Activated Microglia Disrupt Perineuronal Nets and Modulate Synaptic Balance in Primary Hippocampal Neurons in vitro.TIF
Published 2021“…Interestingly, immunocytochemical staining of the PNN component Aggrecan revealed a clear disruption of PNNs accompanied by a significant increase of glutamatergic and a decrease of γ-aminobutyric acid-(GABA)ergic synapse numbers on PNN wearing neurons. …”
-
33247
Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings
Published 2021“…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
-
33248
Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings
Published 2021“…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
-
33249
Video_1_Poly I:C Activated Microglia Disrupt Perineuronal Nets and Modulate Synaptic Balance in Primary Hippocampal Neurons in vitro.MP4
Published 2021“…Interestingly, immunocytochemical staining of the PNN component Aggrecan revealed a clear disruption of PNNs accompanied by a significant increase of glutamatergic and a decrease of γ-aminobutyric acid-(GABA)ergic synapse numbers on PNN wearing neurons. …”
-
33250
Regulation of macroscopic Cx46 currents by external Ca and Mg
Published 2011“…(A) Representative current–voltage (I-V) relationships (top) at different external Ca concentrations ranging from nominal (0 added) to 1.8 mM were obtained by applying slow (3 min) voltage ramps from +50 to −100 mV to a Cx46-expressing oocyte. …”
-
33251
Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings
Published 2021“…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
-
33252
Supporting data file.
Published 2024“…We studied Type 1 diabetes (T1D) as a paradigmatic example of autoimmunity. In T1D, variation in the Human Leucocyte Antigen (HLA) genes explains up to 50% of the genetic risk, indicating that T cells have a major role in T1D etiopathogenesis. …”
-
33253
Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings
Published 2021“…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
-
33254
Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings
Published 2021“…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
-
33255
Superhydrophobic TiO<sub>2</sub> Surfaces: Preparation, Photocatalytic Wettability Conversion, and Superhydrophobic−Superhydrophilic Patterning
Published 2007“…This UV-stimulated wettability conversion was employed to prepare superhydrophilic stripes (50 and 500 μm wide) on a superhydrophobic TiO<sub>2</sub> surface. …”
-
33256
Superior Hard but Quickly Reversible Si–O–Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings
Published 2021“…The highly cross-linked continuous network endows the coating with a hardness (<i>H</i> = 0.83 GPa) higher than those of most polymers (<i>H</i> < 0.3 GPa), while the uniformly dispersed micelles decrease the Young’s modulus (<i>E</i> = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an <i>H</i>/<i>E</i> of 14.1% and an elastic recovery rate (<i>W</i><sub>e</sub>) of 86.3%. …”
-
33257
DataSheet_1_Processes and mechanisms of vegetation ecosystem responding to climate and ecological restoration in China.docx
Published 2022“…Vegetation growth in China experienced an abrupt change in the 1990s and 2000s, accounting for 50% and 33.6% of the whole China respectively. Of the area before the breakpoint, 45.4% showed a trend of vegetation decrease, which was concentrated mainly in east China, while 43% of the area after the breakpoint also showed vegetation degradation, mainly in northwest China. …”
-
33258
Data_Sheet_1_Robust Silica–Polyimide Aerogel Blanket for Water-Proof and Flame-Retardant Self-Floating Artificial Island.doc
Published 2021“…As a result, a remarkable decrease of 138°C is achieved using the silica blanket as the thermal insulator on a hot plate of approximately 250°C. …”
-
33259
Conduction block was detected in naïve <i>Pmp22</i>+/- nerves.
Published 2016“…This finding demonstrated a conduction block that was defined as a ≥50% decrease of proximal CMAP amplitude over the distal CMAP amplitude, a stringent criterion used in human NCS [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006290#pgen.1006290.ref041" target="_blank">41</a>]. …”
-
33260
Non-Homogeneous Distribution of Inhibitory Inputs Among Motor Units in Response to Nociceptive Stimulation
Published 2025“…Third, we observed a significant reduction in the proportion of common inputs to motor units during Pain. …”