Search alternatives:
we decrease » _ decrease (Expand Search), teer decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
we decrease » _ decrease (Expand Search), teer decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
17521
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…The investigation focuses on two types of microtextured surfaces with totally different surface peak–valley features: a negatively skewed surface with micropit arrays (<i>Ssk</i> < 0) and a positively skewed surface with micropillar arrays (<i>Ssk</i> > 0). …”
-
17522
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…The investigation focuses on two types of microtextured surfaces with totally different surface peak–valley features: a negatively skewed surface with micropit arrays (<i>Ssk</i> < 0) and a positively skewed surface with micropillar arrays (<i>Ssk</i> > 0). …”
-
17523
RAINFALL REGIME ON FINE ROOT GROWTH IN A SEASONALLY DRY TROPICAL FOREST
Published 2021“…The fine root biomass in July 2015 was 7.7±5.0 Mg ha-1 and the length was 5.0±3.2 km m-2. Fine root growth in SDTF is strongly limited by dry periods, occurring decreases in biomass and length of fine roots in all layers evaluated. …”
-
17524
-
17525
-
17526
Antimycin A has broad spectrum antiviral activity against RNA viruses.
Published 2013“…The calculated IC<sub>50</sub> value for antimycin A in the HCV replicon system is shown on the graph. …”
-
17527
Structure diagram of ensemble model.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17528
Synonymous Co-Variation across the E1/E2 Gene Junction of Hepatitis C Virus Defines Virion Fitness
Published 2016“…Overtime, the number of codons actively mutating decreases for all virus groupings. We identify strong synonymous co-variation between codon sites in a group of sequences harbouring a 3 bp in-frame insertion and propose that synonymous mutation acts to stabilize the RNA structural backbone.…”
-
17529
Fitting formula parameter table.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17530
Test plan.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17531
Fitting surface parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17532
-
17533
Model generalisation validation error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17534
Empirical model prediction error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17535
Fitting curve parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17536
Test instrument.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17537
Empirical model establishment process.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17538
Model prediction error trend chart.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17539
Basic physical parameters of red clay.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17540
BP neural network structure diagram.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”