Search alternatives:
mg decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
mg decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
721
-
722
-
723
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
724
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
725
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
726
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
727
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
728
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
729
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
730
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
731
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
732
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
733
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
734
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
735
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
736
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
737
-
738
-
739
-
740