Showing 501 - 520 results of 27,003 for search '(( 50 ((mean decrease) OR (nn decrease)) ) OR ( 50 ((a decrease) OR (teer decrease)) ))', query time: 0.70s Refine Results
  1. 501

    Decreased ISCs and increased goblet cells after intestinal specific loss of MLL1. by Neha Goveas (11790822)

    Published 2021
    “…(C) Decrease in ISC markers, OLFM4 and SOX9 in <i>Mll1</i><sup><i>FC/FC; Vil-Cre-ERT2/+</i></sup> intestinal sections. …”
  2. 502

    Simultaneous ablation of Syt1 and Syt7 decreases the RRP size at excitatory synapses. by Taulant Bacaj (803415)

    Published 2015
    “…<p><b>A & B.</b> Ablation of both Syt1 and Syt7 in hippocampal neurons decreases the RRP size at excitatory synapses in a manner that is rescued by WT Syt7 (Syt7<sup>WT</sup>) or Syt1 (Syt1<sup>WT</sup>) but not by mutant Syt7 (Syt7<sup>C2A</sup>*<sup>B</sup>*) or Syt1 (Syt1<sup>C2A</sup>*<sup>B</sup>*) with altered top-loop sequences containing the Ca<sup>2+</sup>-binding sequences (A, Syt7 rescue; B, Syt1 rescue). …”
  3. 503
  4. 504

    DHT increases whereas orchidectomy decreases the weight and cross sectional area of hindlimb muscles. by Young-Eun Yoo (323357)

    Published 2013
    “…<b>A:</b> In WT mice, DHT increased the GN weight by 7% (212.4±8.8 mg), whereas orchidectomy decreased it by 14% (171.4±9.0 mg) compared with control WT mice (198.4±5.5 mg). …”
  5. 505

    GBE did not modify cell morphology but decreased reactive oxygen species (ROS) levels. by Virginie Rhein (243241)

    Published 2010
    “…<b>C</b>) Mitochondria-associated ROS levels measured after incubation with DHR (DHR fluorescence units/1×10<sup>5</sup> cells). ROS levels showed a trend to be increased in APP cells compared to control cells (<sup>(</sup>*<sup>)</sup>p = 0.082, unpaired student's t-test, n = 11, values represent the means ± S.E.). …”
  6. 506

    Decreased sensitivity of coculture HIV spread to RAL predicts multiple infections per cell. by Mikaël Boullé (3329427)

    Published 2016
    “…Blue dashed line represents parametrization of the cell-free infection response to RAL in terms of IC<sub>50</sub> (1.9 nM) and hill coefficient (0.7). Red dashed line represents the fit of coculture infection using the decreased sensitivity to RAL (<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005964#sec008" target="_blank">Materials and methods</a>). …”
  7. 507
  8. 508
  9. 509
  10. 510
  11. 511
  12. 512
  13. 513

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  14. 514

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  15. 515

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  16. 516

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  17. 517

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  18. 518

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  19. 519

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  20. 520

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”