Search alternatives:
teer decrease » greater decrease (Expand Search)
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
13961
-
13962
-
13963
-
13964
-
13965
-
13966
Quantitative Imaging of the Action of vCPP2319, an Antimicrobial Peptide from a Viral Scaffold, against <i>Staphylococcus aureus</i> Biofilms of a Clinical Isolate
Published 2023“…In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. …”
-
13967
Quantitative Imaging of the Action of vCPP2319, an Antimicrobial Peptide from a Viral Scaffold, against <i>Staphylococcus aureus</i> Biofilms of a Clinical Isolate
Published 2023“…In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. …”
-
13968
Quantitative Imaging of the Action of vCPP2319, an Antimicrobial Peptide from a Viral Scaffold, against <i>Staphylococcus aureus</i> Biofilms of a Clinical Isolate
Published 2023“…In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. …”
-
13969
Quantitative Imaging of the Action of vCPP2319, an Antimicrobial Peptide from a Viral Scaffold, against <i>Staphylococcus aureus</i> Biofilms of a Clinical Isolate
Published 2023“…In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. …”
-
13970
Tree cover change in percent between 2000 and 2010 (TCC) for 5×5 km grid cells.
Published 2017“…<p>Green colors indicate an increase, gray colors indicate a slight increase or decrease and red colors indicate a decrease in tree cover between 2000 and 2010. …”
-
13971
Image_6_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg
Published 2022“…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13972
Image_9_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg
Published 2022“…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13973
Image_7_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg
Published 2022“…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13974
Image_10_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png
Published 2022“…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13975
Table_3_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.xls
Published 2022“…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13976
-
13977
Image_11_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png
Published 2022“…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13978
Table_10_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.xls
Published 2022“…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13979
Image_1_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png
Published 2022“…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
-
13980
Table_7_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.xls
Published 2022“…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”