Search alternatives:
mg decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
mg decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1281
Bacterial strains and plasmids.
Published 2025“…Our previous research showed that deleting <i>bipA</i> in <i>Escherichia coli</i> at 20°C leads to a defect in 50S ribosomal assembly and impaired lipopolysaccharide (LPS) synthesis. …”
-
1282
-
1283
TMD residues decrease sensitivity.
Published 2017“…Glu residues are color coded based upon effect, with residues in red producing a significant decrease in pH<sub>50</sub>, and in yellow, an insignificant or weak effect, whereas the dark purple and magenta for His residues are synonymous to the red of Glu residues. …”
-
1284
Analysis of Research Activity in Gastroenterology: Pancreatitis Is in Real Danger
Published 2016“…<div><p>Objective</p><p>Biomedical investment trends in 2015 show a huge decrease of investment in gastroenterology. …”
-
1285
-
1286
-
1287
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
1288
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
1289
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
1290
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
1291
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
1292
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
1293
-
1294
-
1295
-
1296
-
1297
-
1298
-
1299
-
1300