Search alternatives:
mm decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
mm decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
501
<i>Myotis rufoniger</i> genome sequence and analyses: <i>M</i>. <i>rufoniger’s</i> genomic feature and the decreasing effective population size of <i>Myotis</i> bats
Published 2017“…<div><p><i>Myotis rufoniger</i> is a vesper bat in the genus <i>Myotis</i>. Here we report the whole genome sequence and analyses of the <i>M</i>. …”
-
502
Image_1_Decreased Endometrial Thickness Is Associated With Higher Risk of Neonatal Complications in Women With Polycystic Ovary Syndrome.tif
Published 2021“…Compared to women with EMT >13 mm, women with EMT ≤8 mm also had significantly higher risk of PTB (adjusted OR 3.79, 95% CI 1.53–9.39; P = 0.004), LBW (adjusted OR 4.33, 95% CI 1.39–13.50; P = 0.012) and SGA (adjusted OR 6.38, 95% CI 1.78–22.83; P = 0.004). …”
-
503
Image_2_Decreased Endometrial Thickness Is Associated With Higher Risk of Neonatal Complications in Women With Polycystic Ovary Syndrome.tif
Published 2021“…Compared to women with EMT >13 mm, women with EMT ≤8 mm also had significantly higher risk of PTB (adjusted OR 3.79, 95% CI 1.53–9.39; P = 0.004), LBW (adjusted OR 4.33, 95% CI 1.39–13.50; P = 0.012) and SGA (adjusted OR 6.38, 95% CI 1.78–22.83; P = 0.004). …”
-
504
Table_1_Decreased Endometrial Thickness Is Associated With Higher Risk of Neonatal Complications in Women With Polycystic Ovary Syndrome.docx
Published 2021“…Compared to women with EMT >13 mm, women with EMT ≤8 mm also had significantly higher risk of PTB (adjusted OR 3.79, 95% CI 1.53–9.39; P = 0.004), LBW (adjusted OR 4.33, 95% CI 1.39–13.50; P = 0.012) and SGA (adjusted OR 6.38, 95% CI 1.78–22.83; P = 0.004). …”
-
505
-
506
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
507
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
508
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
509
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
510
-
511
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
512
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
513
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
514
-
515
-
516
-
517
-
518
-
519
-
520