Showing 4,901 - 4,920 results of 19,958 for search '(( 50 ((ms decrease) OR (nn decrease)) ) OR ( 100 ((a decrease) OR (we decrease)) ))', query time: 0.86s Refine Results
  1. 4901
  2. 4902
  3. 4903
  4. 4904
  5. 4905
  6. 4906
  7. 4907
  8. 4908

    Knockdown of <i>Jmjd6a</i> leads to various eye defects in <i>Xenopus laevis</i> development. by Jee Yoon Shin (7067369)

    Published 2019
    “…<p>(A) Injection of <i>Jmjd6</i> MO results in various eye defects (normal to severe) in the injected side of embryos (red arrows) at stage 40 (n = 3). …”
  9. 4909
  10. 4910
  11. 4911

    Excel raw data. by Michael Getie (12400923)

    Published 2025
    “…<div><p>Background</p><p>Antimicrobial resistance is a major public health problem worldwide, particularly in developing countries. …”
  12. 4912

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  13. 4913

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  14. 4914

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  15. 4915

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  16. 4916

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  17. 4917

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  18. 4918

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  19. 4919

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  20. 4920

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”