Search alternatives:
ms decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
ms decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
4901
-
4902
-
4903
-
4904
-
4905
-
4906
-
4907
-
4908
Knockdown of <i>Jmjd6a</i> leads to various eye defects in <i>Xenopus laevis</i> development.
Published 2019“…<p>(A) Injection of <i>Jmjd6</i> MO results in various eye defects (normal to severe) in the injected side of embryos (red arrows) at stage 40 (n = 3). …”
-
4909
-
4910
-
4911
Excel raw data.
Published 2025“…<div><p>Background</p><p>Antimicrobial resistance is a major public health problem worldwide, particularly in developing countries. …”
-
4912
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
4913
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
4914
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
4915
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
4916
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
4917
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
4918
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
4919
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
4920
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”