Search alternatives:
ms decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
ms decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
11341
Fig 5 -
Published 2021“…Colored sensors denote significant changes (blue = decrease, red = increase) lasting for at least 100 ms in the 2 s windows of interest. …”
-
11342
Inhaled fluticasone propionate impairs GATA-3 nuclear localization in PBMCs.
Published 2013“…(C) Immunoblotting analyses of PBMCs demonstrated a time-dependent decrease in nuclear expression of GATA-3, and increased cytoplasmic GATA-3 expression after inhalation of FP. …”
-
11343
Stem peptides interact with the dengue virus membrane.
Published 2010“…<p>Decrease in pyrene-excimer fluorescence intensity, as a function of the concentration of stem peptide added to pyrene-labeled virions, normalized to its complete loss upon addition of TX100.…”
-
11344
File S1 - Different Effects of Guanine Nucleotides (GDP and GTP) on Protein-Mediated Mitochondrial Proton Leak
Published 2014“…Different amounts of protein (50 or 100 µg) were loaded into each lane (as indicated).…”
-
11345
Image1_Total flavonoids extracted from Penthorum chinense Pursh mitigates CCl4-induced hepatic fibrosis in rats via inactivation of TLR4-MyD88-mediated NF-κB pathways and regulatio...
Published 2023“…Subsequently, rats were randomly assigned to a control group (Control), a carbon tetrachloride (CCl<sub>4</sub>)-induced hepatic fibrosis model group (Model), a positive control group [0.2 mg/(kg∙day)] of Colchicine), and three TFPCP treatment groups [50, 100, and 150 mg/(kg∙day)]. …”
-
11346
Image2_Total flavonoids extracted from Penthorum chinense Pursh mitigates CCl4-induced hepatic fibrosis in rats via inactivation of TLR4-MyD88-mediated NF-κB pathways and regulatio...
Published 2023“…Subsequently, rats were randomly assigned to a control group (Control), a carbon tetrachloride (CCl<sub>4</sub>)-induced hepatic fibrosis model group (Model), a positive control group [0.2 mg/(kg∙day)] of Colchicine), and three TFPCP treatment groups [50, 100, and 150 mg/(kg∙day)]. …”
-
11347
Lack of tau prevents impaired adult hippocampal progenitor cell proliferation in AICD-Tg mice.
Published 2016“…Compared to wild-type (left) there is a significant decrease in the number of DCX+ cells in the SGZ of AICD-Tg mice (right). …”
-
11348
Figure S1 - The Mu Opioid Receptor Promotes Opioid and Growth Factor-Induced Proliferation, Migration and Epithelial Mesenchymal Transition (EMT) in Human Lung Cancer
Published 2014“…<p><b>The MOR antagonist, naltrexone, inhibits epithelial mesenchymal transition (EMT) in human lung cancer cells.</b> <b>Panel A</b>: H358 human NSCLC cells were either untreated, treated with 100 nM morphine, DAMGO, fentanyl or 100 ng/ml EGF for 96 hours with or without pretreatment of cells with the MOR antagonist, naltrexone (100 nM). …”
-
11349
-
11350
Effect of apigenin intake on NF-κB activation in the dorsolateral prostate of TRAMP mice.
Published 2015“…A significant decrease in NF-κB/p65 and NF-κB/p50 is observed after apigenin intake. …”
-
11351
Influence of Steric and Dispersion Interactions on the Thermochemistry of Crowded (Fluoro)alkyl Compounds
Published 2023“…ConspectusAlkanes play a pivotal role in industrial, environmental, and biological processes. …”
-
11352
<strong>Drought re-routes soil microbial carbon metabolism towards emission of volatile metabolites in an artificial tropical rainforest</strong>
Published 2023“…The NOESY mixing time was 100 ms and the acquisition time was 4 s followed by a relaxation delay of 1.5 s during which presaturation of the water signal was applied. …”
-
11353
Model simulations of feedback induced shift of Ca-current in wild-type and mutant zebrafish.
Published 2011“…The value of was varied from 100% (A) to 10% (C) of the wild-type value <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001107#pbio.1001107-Fahrenfort1" target="_blank">[6]</a>. …”
-
11354
Activation of AMPK prevented drugs-induced mitochondrial dysfunction.
Published 2016“…Percentages relative to respective controls were calculated. (<b>A</b>) AICAR prevented the decrease in cellular ATP in rat hepatocytes treated with acetaminophen (10mM, 24h) or diclofenac (250μM, 24h). …”
-
11355
Forests to Faucets 2.0
Published 2024“…As developed in Forests to Faucets (USFS 2011), the Important Areas for Surface Drinking Water (IMP) model can be broken down into two parts: IMPn = (PRn) * (Qn)Calculated using R, Updated September 2023IMP_RIMP, Important Areas for Surface Drinking Water (0-100 Quantiles)Calculated using R, Updated September 2023NON_FORESTAcres of non-forestPADUS and NLCDPRIVATE_FORESTAcres of private forestPADUS and NLCDPROTECTED_FORESTAcres of protected forest (State, Local, NGO, Permanent Easement)PADUS, NCED, and NLCDNFS_FORESTAcres of National Forest System (NFS) forestPADUS and NLCDFEDERAL_FORESTAcres of Other Federal forest (Non-NFS Federal)PADUS and NLCDPER_FORPRIPercent Private ForestCalculated using ArcGISPER_FORNFSPercent NFS ForestCalculated using ArcGISPER_FORPROPercent Protected (Other State, Local, NGO, Permanent Easement, NFS, and Federal) ForestCalculated using ArcGISWFP_HI_ACAcres with High and Very High Wildfire Hazard Potential (WHP)Dillon, 2018PER_WFPPercent of HU 12 with High and Very High Wildfire Hazard Potential (WHP)Dillon, 2018PER_IDRISKPercent of HU 12 that is at risk for mortality - 25% of standing live basal area greater than one inch in diameter will die over a 15- year time frame (2013 to 2027) due to insects and diseases.Krist, et Al,. 2014PERDEV_1040_45% Landuse Change 2010-2040 (low)ICLUSPERDEV_1090_45% Landuse Change 2010-2090 (low)ICLUSPERDEV_1040_85% Landuse Change 2010-2040 (high)ICLUSPERDEV_1090_85% Landuse Change 2010-2090 (high)ICLUSPER_Q40_45% Water Yield Change 2010-2040 (low) WASSI , Updated September 2023PER_Q90_45% Water Yield Change 2010-2090 (low) WASSI , Updated September 2023PER_Q40_85% Water Yield Change 2010-2040 (high) WASSI , Updated September 2023PER_Q90_85% Water Yield Change 2010-2090 (high) WASSI , Updated September 2023WFP(APCW_R * IMP_R * PER_WFP )/ 10,000Wildfire Threat to Important Surface Drinking Water Watersheds Calculated using ArcGIS, Updated September 2023IDRISK(APCW_R * IMP_R * PER_IDRISK )/ 10,000Insect & Disease Threat to Important Surface Drinking Water Watersheds Calculated using ArcGIS, Updated September 2023DEV1040_45(APCW_R * IMP_R * PERDEV_1040_45)/ 10,000 Landuse Change in Important Surface Drinking Water Watersheds 2010-2040 (low emissions) Calculated using ArcGIS, Updated September 2023DEV1090_45(APCW_R * IMP_R * PERDEV_1090_45)/ 10,000 Landuse Change in Important Surface Drinking Water Watersheds 2010-2040 (high emissions) Calculated using ArcGIS, Updated September 2023DEV1040_85(APCW_R * IMP_R * PERDEV_1040_85)/ 10,000 Landuse Change in Important Surface Drinking Water Watersheds 2010-2090 (low emissions) Calculated using ArcGIS, Updated September 2023DEV1090_85(APCW_R * IMP_R * PERDEV_1090_85)/ 10,000 Landuse Change in Important Surface Drinking Water Watersheds 2010-2090 (high emissions) Calculated using ArcGIS, Updated September 2023Q1040_45-1 * (APCW_R * IMP_R * PER_Q40_45)/ 10,000 Water Yield Decrease in Important Surface Drinking Water Watersheds 2010-2040 (low emissions) Calculated using ArcGIS, Updated September 2023Q1090_45-1 * (APCW_R * IMP_R * PER_Q90_45)/ 10,000 Water Yield Decrease in Important Surface Drinking Water Watersheds 2010-2040 (high emissions) Calculated using ArcGIS, Updated September 2023Q1040_85-1 * (APCW_R * IMP_R * PER_Q40_85)/ 10,000 Water Yield Decrease in Important Surface Drinking Water Watersheds 2010-2090 (low emissions) Calculated using ArcGIS, Updated September 2023Q1090_85-1 * (APCW_R * IMP_R * PER_Q90_85)/ 10,000 Water Yield Decrease in Important Surface Drinking Water Watersheds 2010-2090 (high emissions) Calculated using ArcGIS, Updated September 2023WFP_IMP_RWildfire Threat to Important Surface Drinking Water Watersheds (0-100 Quantiles)Calculated using R, Updated September 2023IDRISK_RInsect & Disease Threat to Important Surface Drinking Water Watersheds (0-100 Quantiles)Calculated using R, Updated September 2023DEV40_45_RLanduse Change in Important Surface Drinking Water Watersheds 2010-2040 (low emissions) (0-100 Quantiles)Calculated using R, Updated September 2023DEV40_85_RLanduse Change in Important Surface Drinking Water Watersheds 2010-2040 (high emissions) (0-100 Quantiles)Calculated using R, Updated September 2023DEV90_45_RLanduse Change in Important Surface Drinking Water Watersheds 2010-2090 (low emissions) (0-100 Quantiles)Calculated using R, Updated September 2023DEV90_85_RLanduse Change in Important Surface Drinking Water Watersheds 2010-2090 (high emissions) (0-100 Quantiles)Calculated using R, Updated September 2023Q40_45_RWater Yield Decrease in Important Surface Drinking Water Watersheds 2010-2040 (low emissions) (0-100 Quantiles)Calculated using R, Updated September 2023Q40_85_RWater Yield Decrease in Important Surface Drinking Water Watersheds 2010-2040 (high emissions) (0-100 Quantiles)Calculated using R, Updated September 2023Q90_45_RWater Yield Decrease in Important Surface Drinking Water Watersheds 2010-2090 (low emissions) (0-100 Quantiles)Calculated using R, Updated September 2023Q90_85_RWater Yield Decrease in Important Surface Drinking Water Watersheds 2010-2090 (high emissions) (0-100 Quantiles)Calculated using R, Updated September 2023RegionUS Forest Service Region numberUSFSRegionnameUS Forest Service Region nameUSFSHUC_Num_DiffThis field compares the value in column HUC12(circa 2019 wbd) with the value in HUC_12 (circa 2009 wassi)-1 = No equivalent WASSI HUC. …”
-
11356
Cognitive control of saccadic eye movements in children with developmental coordination disorder
Published 2016“…Decreases in touch time seemed to be more evident in the DCD group (~ 343 ms difference) compared to the TD group (~ 100 ms difference), however, this result did not reach statistical significance. …”
-
11357
Quantitative T<sub>2</sub> and T<sub>2</sub>* mapping at 10 weeks post infection.
Published 2015“…<p>(<b>A</b>) Non contrast-enhanced anatomical acquisitions, T<sub>2</sub> and T<sub>2</sub>* maps for two representative mice from the control and the schistosomiasis group (color bar range: 0 to 50 ms for T<sub>2</sub> maps, 0 to 20 ms for T<sub>2</sub>* maps). …”
-
11358
Imaging of Tryptophan Uptake and Exchange with FLIPW-CTYT in Human Oral Carcinoma KB Cells
Published 2007“…<p>(A) Perfusion of KB cells with various concentrations l-tryptophan (L-Trp) and 100 μM l-histidine (L-His) in Tyrode's buffer. …”
-
11359
cpFLIPPi-6.4m can report rapid changes in Pi-induced FRET <i>in vivo</i>.
Published 2015“…<p>(A) Image showing spread of the injected fluid along the intestine, visualized by injecting propidium iodide. …”
-
11360
Supplementary figure 1
Published 2022“…</strong>Primary cortical neurons were incubated in Neurobasal medium containing either 25 mM (control), 50 mM, or 100 mM glucose. After 72 hours of treatment, viability showed a dose-dependent decrease as glucose concentration increased. …”