Showing 17,741 - 17,760 results of 74,492 for search '(( 50 ((n decrease) OR (a decrease)) ) OR ( 5 ((we decrease) OR (mean decrease)) ))', query time: 1.01s Refine Results
  1. 17741

    <b>ART does not correct plasma virome and cytokine dysregulations induced by HIV-1</b> by Yingying Ma (18762652)

    Published 2024
    “…<b>Results:</b> ART resulted in an increased abundance and prevalence of human pegivirus type 1 (HPgV-1) in plasma, while slightly decrease of anellovirus diversity and abundance was observed. …”
  2. 17742

    DataSheet1_A head-to-head comparison of humoral and cellular immune responses of five COVID-19 vaccines in adults in China.docx by Xu Han (141301)

    Published 2024
    “…The neutralizing antibodies GMT of all vaccines showed a significant decrease at V3 compared to V1. The neutralizing antibody GMT against the omicron variant of all vaccines at V1 showed a significant decrease compared to the wild strain. …”
  3. 17743

    An automated screening method for detecting compounds with goitrogenic activity using transgenic zebrafish embryos by Sergio Jarque (5698859)

    Published 2018
    “…<div><p>The knowledge on environmentally relevant chemicals that may interfere with thyroid signaling is scarce. Here, we present a method for the screening of goitrogens, compounds that disrupt the thyroid gland function, based on the automatic orientation of zebrafish in a glass capillary and a subsequent imaging of reporter gene fluorescence in the thyroid gland of embryos of the transgenic zebrafish line tg(tg:mCherry). …”
  4. 17744
  5. 17745

    Salicylic Acid Derivatives Inhibit Oxalate Production in Mouse Hepatocytes with Primary Hyperoxaluria Type 1 by María Dolores Moya-Garzón (5597540)

    Published 2018
    “…We introduce here an unprecedented activity of salicylic acid derivatives as agents capable of decreasing oxalate output in hyperoxaluric hepatocytes at the low micromolar range, which means a potential use in the treatment of PH1. …”
  6. 17746

    Salicylic Acid Derivatives Inhibit Oxalate Production in Mouse Hepatocytes with Primary Hyperoxaluria Type 1 by María Dolores Moya-Garzón (5597540)

    Published 2018
    “…We introduce here an unprecedented activity of salicylic acid derivatives as agents capable of decreasing oxalate output in hyperoxaluric hepatocytes at the low micromolar range, which means a potential use in the treatment of PH1. …”
  7. 17747

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  8. 17748

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  9. 17749

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  10. 17750

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  11. 17751

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  12. 17752

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  13. 17753

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  14. 17754

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  15. 17755

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  16. 17756

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  17. 17757

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  18. 17758

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  19. 17759

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”
  20. 17760

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). …”