Showing 1 - 20 results of 38,513 for search '(( 50 ((n decrease) OR (nn decrease)) ) OR ((( 50 ms decrease ) OR ( _ e decrease ))))', query time: 0.43s Refine Results
  1. 1
  2. 2
  3. 3

    Repetitive stress induces a decrease in sound-evoked activity. by Ghattas Bisharat (20706928)

    Published 2025
    “…Activity rates decreased during repeated stress compared to baseline (2-way ANOVA, condition F = 185.6, <i>p</i> = 4.8 × 10<sup>−42</sup>, condition: intensity interaction F = 10.37, <i>p</i> = 9.3 × 10<sup>−21</sup>, nested ANOVA (mouse nested within session), condition F = 174, <i>p</i> = 1.5 × 10<sup>−39</sup>, condition: intensity interaction F = 12.7, <i>p</i> = 2 × 10<sup>−26</sup>, post hoc for each level baseline versus repetitive stress <i>p</i> < 0.01 for all levels above 50 dB, all Bonferroni corrected). …”
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Juvenile demyelination leads to a substantial decrease in potassium currents in PV interneurons of the PFC. by Sara Hijazi (21656615)

    Published 2025
    “…</b> Representative traces of potassium currents evoked with 10 mV potential steps from −70mV to +60 mV in PFC PV interneurons from control (black) and cuprizone (red) mice. Scale: 500 pA, 100 ms. <b>B</b>. I–V curves showing a significant decrease in Kv amplitude in PV interneurons from mice that underwent juvenile demyelination. …”
  11. 11
  12. 12
  13. 13
  14. 14

    NatB inactivation decreased the level of MAPK and proposed model of EGFR/MAPK signaling regulation by NatB and the N-end rule pathways. by Zhentao Sheng (107495)

    Published 2020
    “…<p>(A-B) <i>psid-D1</i> (A) or <i>psid-D4</i> (B) clones in 3rd instar fat body, which were marked by GFP expression (pointed by arrowheads), showed decreased MAPK levels (anti-MAPK staining, red). (C) <i>psid-D4</i> clones in wing disc, marked by GFP expression (pointed by arrowheads), showed decreased MAPK level. …”
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses by Jing Wang (6206297)

    Published 2025
    “…Anthropogenic activities, particularly land use change and management practices, alter the global nitrogen (N) cycle. As a central part of the global N cycle, soil N supply from net N mineralization (NNM) and net nitrification (NN) contributes to over 50% of crop N uptake. …”
  20. 20