Showing 1,021 - 1,040 results of 82,075 for search '(( 50 ((ng decrease) OR (((a decrease) OR (mean decrease)))) ) OR ( 2 we decrease ))', query time: 1.52s Refine Results
  1. 1021
  2. 1022
  3. 1023

    Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells by Tadeja Kuret (5059433)

    Published 2018
    “…Resolution of the acute phase and SAA reduction are well documented, however the exact mechanism remains elusive. Two inducible SAA proteins, SAA1 and SAA2, with their variants could contribute to systemic inflammation. …”
  4. 1024
  5. 1025
  6. 1026
  7. 1027
  8. 1028

    Using climate envelope models to identify potential ecological trajectories on the Kenai Peninsula, Alaska by Dawn Robin Magness (6157265)

    Published 2018
    “…We use two lines of evidence, model convergence and empirically measured rates of change, to identify the following plausible ecological trajectories for the peninsula: (1.) alpine tundra and sub-alpine shrub decrease, (2.) perennial snow and ice decrease, (3.) forests remain on the Kenai Lowlands, (4.) the contiguous white-Lutz-Sitka spruce complex declines, and (5.) mixed conifer afforestation occurs along the Gulf of Alaska coast. …”
  9. 1029
  10. 1030
  11. 1031
  12. 1032

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  13. 1033

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  14. 1034

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  15. 1035

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  16. 1036

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  17. 1037

    Brief report: Circulating markers of fibrosis are associated with immune reconstitution status in HIV-infected men by F. A. Tobolowsky (4807467)

    Published 2018
    “…Among men with paired pre-/post-ART samples, non-responders had greater HA increases and CXCL4 decreases than controls (HA: 50 vs 12 ng/mL, p = 0.04; CXCL4: -1258 vs -405 ng/mL, p = 0.01).…”
  18. 1038
  19. 1039
  20. 1040