Search alternatives:
point decrease » point increase (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a point » _ point (Expand Search), 5 point (Expand Search), _ points (Expand Search)
point decrease » point increase (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a point » _ point (Expand Search), 5 point (Expand Search), _ points (Expand Search)
-
12381
Structure-Based Design, Synthesis, and Biological Evaluation of New Triazolo[1,5‑<i>a</i>]Pyrimidine Derivatives as Highly Potent and Orally Active ABCB1 Modulators
Published 2020“…In this work, we reported the structure-based design of triazolo[1,5-<i>a</i>]pyrimidines as new ABCB1 modulators, of which <b>WS-691</b> significantly increased sensitization of ABCB1-overexpressed SW620/Ad300 cells to paclitaxel (PTX) (IC<sub>50</sub> = 22.02 nM). …”
-
12382
The effects of cytokine priming on the virus replication in moDCs.
Published 2014“…<p>Monocyte-derived human DCs from four different blood donors were primed with different doses of IFN-α (1, 10 or 100 IU/ml), IFN-β (1, 10 or 100 IU/ml), TNF-α (0.5, 5 or 50 ng/ml), or IL-1β (1, 10 or 100 ng/ml) for 24 h followed by infection with H3N2 or H7N9 viruses for 24 hours. …”
-
12383
Dataset visualization diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12384
Dataset sample images.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12385
Performance comparison of different models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12386
C2f and BC2f module structure diagrams.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12387
YOLOv8n detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12388
YOLOv8n-BWG model structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12389
BiFormer structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12390
YOLOv8n-BWG detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12391
GSConv module structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12392
mAP0.5 Curves of various models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12393
Network loss function change diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12394
Comparative diagrams of different indicators.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12395
YOLOv8n structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12396
Geometric model of the binocular system.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12397
Enhanced dataset sample images.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
12398
N<sup>6</sup>-methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon blac...
Published 2019“…We found that both of m<sup>6</sup>A modifications of pri-miRNA-126 and its binding with DGCR8 were decreased after CB treatment, which resulted in the reduction of mature miRNA-126 accompanied by accumulation of unprocessed pri-miRNA-126. …”
-
12399
On a steepening environmental gradient, a sharp and stable range margin forms near the expansion threshold.
Published 2018“…(<b>b</b>) As the environmental gradient steepens, the frequency of limited adaptation within the metapopulation increases (black and grey), and hence neutral variation decreases (blue). The black line gives the proportion of demes with limited adaptation after 50,000 generations, when the range margin appears stable; grey gives the proportion after 40,000 generations (depicted is an average over a sliding window of 15 demes). …”
-
12400
DataSheet_1_A20 Establishes Negative Feedback With TRAF6/NF-κB and Attenuates Early Brain Injury After Experimental Subarachnoid Hemorrhage.zip
Published 2021“…<p>Nuclear factor (NF)-κB–ty -50mediated neuroinflammation plays a crucial role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). …”