Search alternatives:
point decrease » point increase (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
e point » _ point (Expand Search), 5 point (Expand Search), a point (Expand Search)
point decrease » point increase (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
e point » _ point (Expand Search), 5 point (Expand Search), a point (Expand Search)
-
8741
Volume of a Nanoscale Water Bridge
Published 2006“…For sharp AFM tips (curvature radius below 50 nm), the experiments indicated that formation of stable water bridges occurs in a much shorter time (below 5 ms).…”
-
8742
Volume of a Nanoscale Water Bridge
Published 2006“…For sharp AFM tips (curvature radius below 50 nm), the experiments indicated that formation of stable water bridges occurs in a much shorter time (below 5 ms).…”
-
8743
Volume of a Nanoscale Water Bridge
Published 2006“…For sharp AFM tips (curvature radius below 50 nm), the experiments indicated that formation of stable water bridges occurs in a much shorter time (below 5 ms).…”
-
8744
-
8745
The effects of cytokine priming on the virus replication in moDCs.
Published 2014“…<p>Monocyte-derived human DCs from four different blood donors were primed with different doses of IFN-α (1, 10 or 100 IU/ml), IFN-β (1, 10 or 100 IU/ml), TNF-α (0.5, 5 or 50 ng/ml), or IL-1β (1, 10 or 100 ng/ml) for 24 h followed by infection with H3N2 or H7N9 viruses for 24 hours. …”
-
8746
-
8747
Scheme of the test section.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
8748
Effects on cooling air mass flow rate.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
8749
Conditions for uncertainty analyses.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
8750
Scheme for mesh convergence study.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
8751
Main test parameters.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
8752
3-D printed NGV specimen.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
8753
Relative error bar of surface temperature.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
8754
Effect on the NGV leading edge temperature.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
8755
Schematic of the test equipment.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
8756
-
8757
-
8758
Aβ causes the downregulation of GKAP.
Published 2011“…A minimum number of 50 synapses out of three replicates per condition was assessed. …”
-
8759
-
8760
Comparative analysis of farm size.
Published 2024“…<div><p>The agricultural issue is a focal point of concern for each country, and e-commerce assistance to farmers, as an emerging model, is gaining increasing attention. …”