Showing 11,981 - 12,000 results of 20,320 for search '(( 50 ((ng decrease) OR (((we decrease) OR (mean decrease)))) ) OR ( e point decrease ))', query time: 0.69s Refine Results
  1. 11981
  2. 11982

    Analysis of Mad2l2 function in fibroblasts. by Mehdi Pirouz (451801)

    Published 2013
    “…Note the inhibition of Ezh2 by phosphorylation, and the concomitant decrease of H3K27me3 in the absence of Mad2l2.</p>…”
  3. 11983

    Data_Sheet_1_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.DOCX... by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  4. 11984

    Table_13_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  5. 11985

    Table_12_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  6. 11986

    Table_6_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  7. 11987

    Table_3_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  8. 11988

    Table_5_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  9. 11989

    Table_2_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  10. 11990

    Table_9_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  11. 11991

    Table_11_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  12. 11992

    Table_7_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  13. 11993

    Table_4_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  14. 11994

    Table_1_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.docx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  15. 11995

    Table_10_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  16. 11996

    Table_8_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  17. 11997

    Table_1_Effect and Safety of Adding Metformin to Insulin Therapy in Treating Adolescents With Type 1 Diabetes Mellitus: An Updated Meta-Analysis of 10 Randomized Controlled Trials.... by Ying Liu (18461)

    Published 2022
    “…Results suggested that metformin significantly decreased the HbA1c level at 12 months (mean difference [MD])=-0.50, 95% confidence interval [CI]=-0.61 to -0.39, P < 0.01); BMI (kg/m<sup>2</sup>) at 3 months (MD=-1.05, 95%CI=-2.05 to -0.05, P=0.04); BMI z-score at 6 months (MD=-0.10, 95%CI=-0.14 to -0.06, P<0.01); and TIDD at 3 (MD=-0.13, 95%CI=-0.20 to -0.06, P<0.01), 6 (MD=-0.18, 95%CI=-0.25 to -0.11, P<0.01), and 12 (MD=-0.42, 95%CI=-0.49 to -0.35, P<0.01) months but significantly increased the risk of hypoglycemia events (risk ratio [RR]=3.13, 95%CI=1.05 to 9.32, P=0.04) and GIAEs (RR=1.64, 95%CI=1.28 to 2.10, P<0.01). …”
  18. 11998

    Table1_Longitudinal Trend of Plasma Concentrations of Extracellular Vesicles in Patients Hospitalized for COVID-19.DOCX by Elena Campello (11953730)

    Published 2022
    “…From baseline to 30-days post-discharge, we observed significantly decreased plasma concentrations of endothelium-derived EVs (E-Selectin+), endothelium-derived bearing TF (E-Selectin+ TF+), endothelium-derived bearing ACE2 (E-Selectin+ACE2+) and leukocyte-EVs bearing TF (CD45+TF+), p < 0.001, p = 0.03, p = 0.001, p = 0.001, respectively. …”
  19. 11999

    Table_2_Effect and Safety of Adding Metformin to Insulin Therapy in Treating Adolescents With Type 1 Diabetes Mellitus: An Updated Meta-Analysis of 10 Randomized Controlled Trials.... by Ying Liu (18461)

    Published 2022
    “…Results suggested that metformin significantly decreased the HbA1c level at 12 months (mean difference [MD])=-0.50, 95% confidence interval [CI]=-0.61 to -0.39, P < 0.01); BMI (kg/m<sup>2</sup>) at 3 months (MD=-1.05, 95%CI=-2.05 to -0.05, P=0.04); BMI z-score at 6 months (MD=-0.10, 95%CI=-0.14 to -0.06, P<0.01); and TIDD at 3 (MD=-0.13, 95%CI=-0.20 to -0.06, P<0.01), 6 (MD=-0.18, 95%CI=-0.25 to -0.11, P<0.01), and 12 (MD=-0.42, 95%CI=-0.49 to -0.35, P<0.01) months but significantly increased the risk of hypoglycemia events (risk ratio [RR]=3.13, 95%CI=1.05 to 9.32, P=0.04) and GIAEs (RR=1.64, 95%CI=1.28 to 2.10, P<0.01). …”
  20. 12000