Showing 381 - 400 results of 16,623 for search '(( 50 ((nn decrease) OR (((we decrease) OR (a decrease)))) ) OR ( 5 nn decrease ))', query time: 0.38s Refine Results
  1. 381

    Top 10 gene ontologies with the lowest p-value. by Rizka Fatriani (17485787)

    Published 2024
    “…<i>paniculata</i> in treating obesity showed that there was a significant decrease in PPARG and EP300 gene expressions in 3T3-L1 mature adipocytes treated with <i>M</i>. …”
  2. 382
  3. 383
  4. 384
  5. 385
  6. 386

    Juvenile demyelination leads to a substantial decrease in potassium currents in PV interneurons of the PFC. by Sara Hijazi (21656615)

    Published 2025
    “…Scale: 500 pA, 100 ms. <b>B</b>. I–V curves showing a significant decrease in Kv amplitude in PV interneurons from mice that underwent juvenile demyelination. …”
  7. 387
  8. 388

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
  9. 389

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
  10. 390

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
  11. 391

    Scatter plot for the absolute decrease in CS rates (A) and the relative decrease in CS rates (B) from 2008 to 2016 among hospitals in Guangzhou grouped by their baseline CS rates. by Xiaoyan Xia (560153)

    Published 2019
    “…One circle represents one hospital, with blue (<i>n</i> = 20), green (<i>n</i> = 36), orange (<i>n</i> = 34), and purple (<i>n</i> = 22) representing baseline CS rates of <30%, 30%–39%, 40%–49%, and ≥50%, respectively. The absolute decrease = the CS rate at baseline − the CS rate in Stage 2; the relative decrease = (the CS rate at baseline − the CS rate in Stage 2) ÷ the CS rate at baseline. …”
  12. 392
  13. 393
  14. 394
  15. 395
  16. 396
  17. 397
  18. 398

    Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q‑Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer by Sibylle Pfammatter (3226209)

    Published 2021
    “…However, the FAIMS interface has not been available on older generation Orbitrap mass spectrometers such as the Q-Exactive. Here, we report the integration of the FAIMS Pro device with embedded electrical and gas connections to a Q-Exactive HF mass spectrometer. …”
  19. 399

    Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q‑Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer by Sibylle Pfammatter (3226209)

    Published 2021
    “…However, the FAIMS interface has not been available on older generation Orbitrap mass spectrometers such as the Q-Exactive. Here, we report the integration of the FAIMS Pro device with embedded electrical and gas connections to a Q-Exactive HF mass spectrometer. …”
  20. 400

    Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q‑Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer by Sibylle Pfammatter (3226209)

    Published 2021
    “…However, the FAIMS interface has not been available on older generation Orbitrap mass spectrometers such as the Q-Exactive. Here, we report the integration of the FAIMS Pro device with embedded electrical and gas connections to a Q-Exactive HF mass spectrometer. …”